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Abstract. This survey concentrates on selected theoretical and com-
putational aspects of the crossing number of graphs. Starting with its
introduction by Turán, we will discuss known results for complete and
complete bipartite graphs. Then we will focus on some historical con-
fusion on the crossing number that has been brought up by Pach and
Tóth as well as Székely. A connection to computational geometry is made
in the section on the geometric version, namely the rectilinear crossing
number. We will also mention some applications of the crossing num-
ber to geometrical problems. This review ends with recent results on
approximation and exact computations.

1 Introduction

The crossing number cr(G) of a graph is the smallest number of edge crossings
achievable when laying out G in the 2-dimensional plane. The problem originated
from Turán in 1944 when he worked in a labor camp [31]:

“There were some kilns where the bricks were made and some open storage
yards where the bricks were stored. All the kilns were connected by rail with all
the storage yards. The bricks were carried on small wheeled trucks to the storage
yards. All we had to do was to put the bricks on the trucks at the kilns, push
the trucks to the storage yards, and unload them there . . . the trouble was only
at the crossings. The trucks generally jumped the rails there, and the bricks fell
out of them; in short, this caused a lot of trouble and loss of time . . . the idea
occured to me that this loss of time could have been minimized if the number
of crossings of the rails had been minimized.”

In 1952, Turán mentioned this problem to Zarankiewicz, who presented a
solution for the crossing number of complete bipartite graphs in 1954 [34]. Un-
fortunately, Ringel found a gap in the published proof that has not been closed
yet.
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1.1 The Crossing Number for Complete Bipartite Graphs

However, the formula presented by Zarankiewicz is conjectured to be correct.
His construction provides drawings with exactly
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crossings. Figure 1 shows the construction for K6,6.

Fig. 1. Zarankiewicz’s construction for K6,6

The conjecture is known to be true for Km,n with min(m, n) ≤ 6 and for
m, n ≤ 7. The smallest unsolved cases are K7,11 and K9,9 with conjectured
values 225 and 256, respectively. New bounding techniques using semi-definite
programming [12] have shown that

0.8594Z(m, n) ≤ cr(Km,n) ≤ Z(m, n).

1.2 The Crossing Number for Complete Graphs

The crossing number for the complete graph Kn is not known either. It is gen-
erally believed to be given by the formula provided by Guy [18]:
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For odd n the formula can be written as Z(n) = 1
64 (n − 1)2(n − 3)2. Also Guy

presented a general drawing scheme for Kn that produces drawings with exactly
Z(n) crossings. Guy’s construction for K8 is shown in Figure 2.
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Fig. 2. Guy’s construction for K8

Combinatorial arguments show the following fact: If Guy’s conjecture is true
for K2k−1, then it is also true for K2k. This is the reason why the proofs con-
centrate on Kn for odd n. Guy [18] was able to prove his conjecture for Kn

with n ≤ 10. For 35 years, this result could not be improved. Recently, Pan and
Richter [24] showed that cr(K11) = 100 thus getting cr(K12) = 150 for free. The
smallest unsolved case is K13 with conjectured crossing number 225.

For many graph classes the situation is similar: cr(G) is known for small
instances only, while for general n not much is known (e.g., hypercube graphs,
toroidal graphs, or generalized Peterson graphs). For a bibliography on the cross-
ing number, see [33].

2 Confusion on the Crossing Number

In their interesting article [23] “What crossing number is it anyway?” Pach and
Toth stated that “. . . some authors might have thought of . . . ” different crossing
numbers. They pointed out that the definitions for the crossing number provided
in the literature were not always the same. In order to investigate this further,
we will use the formal definitions of Szégely [30].

A drawing D of a graph G into the plane is an injection from the vertex set
V (G) into the plane, and a mapping Φ of the edge set E(G) into the set of simple
planar curves, such that the curve corresponding to the edge has end points Φ(u)
and Φ(v), and contains no other vertices. The number of crossings cr(D) in D is
the number of intersection points of all unordered pairs of interiors of edges. The
crossing number cr(G) of a graph G is the minimum cr(D) over all drawings D
of G. A drawing D is optimal if it realizes cr(D) = cr(G).

A drawing D is called normal if it satisfies

i any two of the curves have finitely many points in common
ii no two curves have a point in common in a tangential way
iii no three curves cross each other in the same point
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A drawing is nice, if it is normal, and satisfies

iv no two adjacent edges cross
v any two edges cross at most once

It can be observed that an optimal drawing must satisfy i, ii, iv, and v, and
can be transformed to satisfy iii. Therefore, we can restrict ourselves to consider
normal or even nice drawings when interested in cr(G).

Pach and Tóth [23] introduced two variants of crossing numbers: The pairwise
crossing number cr-pair(G) is the minimum number of edge pairs that cross each
other at least once, over all normal drawings of G. The odd crossing number
cr-odd(G) is equal to the minimum number of edge pairs that cross each other
an odd number of times, over all normal drawings of G.

In [32], Tutte introduces yet another version that Szégely calls the independent
odd crossing number cr-iodd(G). It is equal to the minimum number of non-
adjacent edge pairs that cross each other odd times, over all normal drawings of
G. The reason why Tutte introduced this crossing number was his “. . . view that
crossings of adjacent edges are trivial, and easily get rid of.” But so far nobody
has shown that this can be done in this setting.

The following relation between these variants is obvious:

cr-iodd(G) ≤ cr-odd(G) ≤ cr-pair (G) ≤ cr(G)

Pach and Tóth mention that “. . . perhaps the most exciting open problem in
the area . . . ” is the question: “Are they all equal?”

One of the reasons why researchers thought that these numbers might be equal
is an old theorem by Hanani [19], rediscovered by Tutte [32]. It states that every
graph that can be drawn such that every pair of non-adjacent edges intersects
an even number of times, is planar. Pach and Tóth [23] have generalized this
result by showing that one can redraw even edges without crossings even in the
presence of odd edges. Pelsmajer, Schaefer, and Štefankovič [25] have shown that
this redrawing can be performed without adding pairs of edges that intersect an
odd number of times; in particular, the odd crossing number does not increase by
the redrawing. It is known that cr(G) ≤ 2(cr-odd(G))2 [23] and that for graphs
with cr-odd(G) ≤ 3 indeed cr-odd(G) = cr(G) [25].

Some authors have stated the conjecture that cr-odd(G) = cr(G). A surprising
result by Pelsmajer, Schaefer, and Štefankovič [26] showed that equality of both
crossing number variants does not hold. The authors have presented a quite
simple infinite family of graphs with cr-odd(G) < cr-pair (G) = cr(G).

Figure 3 shows an example of such a graph G. The four distinguished edges
a, b, c and d have weights wa = 1, wb = wc = 3, and wd = 4. We assume that
the weights of the edges e along the two main cycles are heavy so that they are
not crossed in an optimal drawing (e.g., we = 15). We can think of replacing an
edge with weight w by w parallel edges. It is also possible to get rid of parallel
edges by subdividing these edges. The left drawing shows an optimal drawing for
cr(G) and cr-pair (G). The crossing number and the pairwise crossing number
is cr(G) = cr-pair (G) = 15. In the right drawing, the edges a and c cross
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Fig. 3. A graph with cr-odd(G) < cr(G). The left drawing shows an optimal drawing
for cr(G) and cr-pair(g) with value 15. The right drawing shows an optimal drawing
for cr-odd (G) with value 13.

each other exactly twice providing the amount of 0 to cr-odd(G) thus giving
cr-odd(G) = 13 < cr(G).

However, the question if cr(G) = cr-pair (G) is still open. The bound of
cr(G) = O(cr-pair (G)2/ log(cr-pair (G))) has been provided by Valtr (mentioned
in [22]).

Now that we know that the four crossing numbers are not equal, a ques-
tion already stated by Szégely is catching our interest [30]: “How is it possible
that decades in research of crossing numbers passed by and no major confusion
resulted from these foundational problems?” — Perhaps the graph theory com-
munity was just lucky that the bounds they provided in all these years apply for
all kinds of crossing numbers.

3 The Rectilinear Crossing Number

The geometric version of the crossing number is called the rectilinear crossing
number, denoted by cr-lin , and requires a drawing in the plane with straight line
segments. It is well known that a planar graph always has a planar drawing with
straight line segments. Therefore, one may think that cr-lin(G) and cr(G) are
equal or close together. However, already Guy [17] has shown that cr(K8) = 18
while cr-lin(K8) = 19. Later, Bienstock and Dean [5] have shown that the two
numbers are equal (cr-lin(G) = cr(G)) for graphs with small crossing number
cr(G) ≤ 3. On the other hand, the authors have also shown that there are graphs
with crossing number 4 and arbitrarily large rectilinear crossing number. How-
ever, for graphs with bounded degree, the crossing number and the rectilinear
crossing number are bounded as functions of one another [4]. In detail, if a graph
has maximum degree d and crossing number k, its rectilinear crossing number
is at most O(dk2).

It is conjectured that the construction by Zarankiewicz for the crossing num-
ber of complete bipartite graphs provides the correct numbers for cr-lin(Km,n).
Due to the nature of the construction, a proof for cr(Km,n) = Z(m, n) would
directly lead to cr-lin(Km,n) = Z(m, n).
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Until 2001, the rectilinear crossing number for the class of complete graphs Kn

was known only for n ≤ 9. Then, two groups of researchers independently showed
that cr-lin(K10) = 62. Aichholzer, Aurenhammer and Krasser [1] exhaustively
enumerated all combinatorial inequivalent point sets (so-called order types) of
size 10. Similar methods have been successful for showing cr-lin(K11) = 102
and cr-lin(K12) = 153. The authors initiated the Rectilinear Crossing Number
Project [27] in which users provide their own computing power to the project.
The main goal of the current project is to use sophisticated mathematical meth-
ods (abstract extension of order types) to determine the rectilinear crossing
number for small values of n, and to compute all existing combinatorial non-
isomorphic minimal drawings. Currently, the rectilinear crossing number is
known for all Kn with n ≤ 21 (cr-lin(K21) = 2055). In contrast to cr(Kn) there
is no conjecture following some formula for arbitrarily large n for cr-lin(Kn).
However, the gaps between the lower and upper bounds for n up to 100 are
quite small, e.g., 1.459.912 ≤ cr-lin(K100) ≤ 1.463.970.

4 Applications of the Crossing Number

Székely has used bounds for the crossing number cr(G) for providing a simple
proof of the Szemerédi-Trotter theorem, that is an important result in combi-
natorial geometry. It asks for the maximum number of incidences of n points
and m curves in the plane such that each pair of curves intersects at maximal
O(1) points, and there are no more than O(1) curves passing through each pair
of points. The answer in this case is O(m + n + (mn)2/3). The idea of Szégely’s
proof was to build a graph in which the vertex set is associated with the point set
and the edges with the curve segments. Using bounds for the crossing number
for complete graphs essentially provided the solution.

Szemerédi-Trotter like theorems can be used for proving hard Erdős problems
in combinatorics, in number theory, in analysis or geometric measure theory.
E.g., Elekes [14] used it to show that any n distinct real numbers have Ω(n1.25)
distinct sums or products. And a famous problem of Erdős in geometry asks for
the maximum number of unit distances that are possible among n points in the
plane. Application of the Szemerédi-Trotter theorem provides O(n4/3), and this
is the best known estimate so far [29].

Dey [13] used the bounds known for the rectilinear crossing number for proving
upper bounds on geometric k-sets. This led to considerable improvement on this
bound after its early solution about 27 years ago.

The rectilinear crossing number of a complete graph is essentially the same as
the minimum number of convex quadrilaterals determined by a set of n points
in general position. It is known that the number of quadrilaterals is proportional
to the fourth power of n, but the precise constant is unknown [28].

An important application of crossing numbers is in graph drawing and VLSI-
design. This is why the author started research in this area in 1995. Figure 4
shows a graph with 120 objects and 161 edges that originated at an insurance
company. The original drawing had 122 crossings, while the crossing minimal
drawing has only 6 crossings.
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Fig. 4. A drawing of the insurance graph with 6 crossings

5 Approximation

Garey and Johnson have shown NP-completeness of the decision variant of the
crossing number problem [21]. Pach and Tóth have shown the same for the
crossing number variants cr-odd and cr-pair . Bienstock has shown that also the
computation of cr-lin(G) is NP-hard [3].

No polynomial time algorithm is known for approximating cr(G) for general
graphs within some non-trivial factor. Bhatt and Leighton [2] suggested the
first algorithm which approximates |V |+ cr(G) for a bounded degree graph G =
(V, E) with a factor of O(log4 |V |). This approximation factor has been improved
by Even, Guha and Schieber [15] in 2002 to O(log3 |V |). For sparse graphs,
when cr(G) = o(|V |), this approximation does not guarantee good results. Until
recently, polynomial time algorithm approximating cr(G) was known, not even
for special graph classes.

Recently, the first approximation results have been achieved that do depend
on the maximum degree and cr(G) only. The approximation results concern the
graph classes of almost planar graphs and apex graphs. A graph G = (V, E) is
called almost planar if G is non-planar, but there does exist an edge e ∈ E so
that G − {e} is planar. Given a planar embedding Π of the remaining graph
G−{e}, the edge e can be re-inserted with the minimal number of crossings via
a shortest path in the extended geometric dual graph of Π . Gutwenger, Mutzel,
and Weiskircher [16] have presented a linear time algorithm (based on the data
structure of SPQR-trees) which is able to find the optimal embedding Π0 of
G − {e}, so that inserting e into Π0 leads to a crossing minimum drawing over
the set of all possible planar embeddings Π . The natural question arises, if this
approach does approximate the crossing number cr(G) by some small factor.
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Fig. 5. Inserting edge e back into the planar graph G − {e} yields m crossings if
deg(v) ≥ 2m. Note that the shaded blocks are dense triconnected subgraphs. The
crossing minimal drawing of G with 2 crossings can be found when flipping the two
blocks adacent to v.

Figure 5 shows an example for which the edge e will be inserted into the pla-
nar graph G − {e} with m crossings. However, the minimum crossing number of
G is 2. This can be achieved by flipping the two lower components adjacent to v.
Hliněný and Salazar [20] observed that the approximation factor in this case de-
pends on the degree of vertex v. If the degree is bounded, then this example does
not hurt the approximation anymore. Hliněný and Salazar have shown that the
above algorithm provides crossing numbers of at most Δ(G − {e})cr(G), where
Δ(G) denotes the maximum degree of G. This number has later been improved to
(Δ(G − {e})/2)cr(G) by Cabello and Mohar [7]. This provides the first constant
approximation algorithm for almost planar graphs with bounded degree graphs.

Very recently, these results could be generalized to apex-graphs. A graph
G = (V, E) is called an apex graph if G is non-planar, but there does exist
a vertex v ∈ V so that G − {v} is planar. Chimani, Gutwenger, Mutzel, and
Wolf [9] have shown that v and all its incident edges can be re-inserted into
an optimal embedding Π0 of G − {v} (which the algorithm will identify) with
the minimum number of crossings in polynomial time. Chimani, Hliněný, and
Mutzel [10] have shown that this algorithm will find solutions which are at most
a factor of deg(v)Δ(G − {v})/2 away from the optimum solution cr(G).

Both approximation results are (almost) tight: for almost planar graphs, there
is an example showing that the approximation factor can be reached, while for
apex graphs the example is still a factor of 2 away.

Some open questions arise:
– Is there a polynomial time algorithm for computing the crossing number

cr(G) for almost planar graphs? Cabello and Mohar [7] have shown that the
weighted version is NP-hard.

– Can the above results be generalized, e.g., for graphs that are planar after
deleting a fixed number of edges?
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6 Exact Computation

Very few publications exist for computing the crossing number of general graphs
exactly. Grohe has shown in 2001 that the crossing number problem is fixed-
parameter tractable. However, the used concepts are based on the theoretical
results of Robertson and Seymour. Recently, Kawarabayashi and Reed 2007 have
improved the quadratic running time to a linear time algorithm for fixed k.
Both approaches reduce the graph to one with bounded tree-width and the same
crossing number and then test if the graph has crossing number at most k. There
is common agreement that this approach is purely theoretical. Related to this,
the following open problem is among the most important ones in the area: Can
cr(G) be computed in polynomial time for graphs with bounded tree-width?

Until 2005, no practically efficient algorithm for computing the crossing num-
ber was known. Today, there exist two approaches for computing the exact cross-
ing number for general graphs. The approaches are based on two integer linear
programming (ILP) formulations of the crossing number problem that can be
solved by branch-and-cut algorithms.

The ILP formulation by Buchheim et al. [6] is called the subdivision cross-
ing minimization approach (SOCM) and optimizes over the set of all simple
drawings. A drawing is called simple if every edge is only crossed at most once.
In order to provide an optimal solution for cr(G), we need to subdivide all
edges in G into a path of length |E|. The variables xe,f are associated with all
non-adjacent edge pairs (e, f) ∈ E2. The constraints come essentially from Ku-
ratowski’s theorem stating that a graph G is planar if and only if it does not
contain a subdivision of K3,3 or K5. Besides the Kuratowski-constraints and the
0/1-constraints, the ILP also contains constraints that guarantee to get simple
drawings of the subdivided graph.

The second approach by Bomze, Chimani and Mutzel [11] is called the
ordering-based ILP model (OOCM). This is not restricted to simple drawings. In-
stead, additional linear ordering variables yefg are introduced for each edge e ∈ E
that may be crossed more than once. The variables yefg for edges e, f, g ∈ E pro-
vide the information in which order an edge e is crossed by f and g. In this ILP
we need Kuratowski constraints on the x variables, linear ordering constraints
on the y variables, 0/1-constraints for all variables, and additional linking con-
straints between the x and y variables.

We solve both ILP models with branch-and-cut algorithms. In order to get
these algorithms to work in practice, we needed to come up with new prepro-
cessing techniques as well as new combinatorial column generation methods. Our
computational experiments on a benchmark set of about 11,000 graphs show that
we can compute the exact crossing numbers for general sparse graphs with up
to 100 vertices and crossing number up to 37 within 30 minutes.

Figure 6 shows the percentage of instances that have been solved within 30
minutes of computation time for about 11.000 graphs of the Rome library. The
x-asis shows the number of vertices |V |. The number of edges of the Rome graphs
is below 1.5|V | on average. The crossing number of almost all graphs with up to
60 vertices could be solved to provable optimality within 30 minutes CPU-time.
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Fig. 6. The average percentage of instances solved within 30 minutes of computation
time of the ILP models SOCM and OOCM
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Fig. 7. The dark line shows the average number of start variables in our branch-and-
cut approach (left axis). The right axis shows the percentage of additional variables
generated by the two approaches.
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The graphs with 100 vertices are much harder to solve. But still, more than 50%
of the instances with 100 vertices could be solved to optimality.

It seems that the second formulation based on linear ordering dominates our
first ILP model. For most instances, we need far more variables in our SOCM
model than in the OOCM model. The dark line in Figure 7 shows the average
number of start variables (left axis) in our branch-and-cut approach. For graphs
with 100 vertices the average number was about 1800 variables. During the
run of the algorithm, column generation adds in additional variables. These
numbers are much higher for the SOCM approach. While SOCM added about
50% new variables with respect to the start variables, OOCM only had to add
18% additional variables for the 100-vertex graphs.

We find it surprising that in the OOCM model only very few y-variables are
needed in order to find the optimum solution. Detailed experiments and results
can be found in [8, 11].

7 Solved Open Problems

We close our survey with selected experimental results for special graph classes.
While we could verify the crossing number of the complete graph on 11 (and
12) vertices (with an alternative optimum solution), one more vertex is still a
challenge.

On the other hand, we are able to compute the crossing number of generalized
Petersen graphs Pn,4 up to n = 44 which was unknown before. Based on our
computed results, we came up with a conjecture of the crossing number of this
graph class.

Moreover, we are confident that we are about to be able to compute the
crossing number of the smallest toroidal grid graph T8,8 whose crossing number
is still unknown (and conjectured to be 48).

Fig. 8. Knuth’s musical graph
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In Exercise 133 of The Art of Computer Programming, Volume 4, Draft of
Section 7, Donald E. Knuth uses the “musical graph” on page 73 of Graphs by
R. J. Wilson and J. J. Watkins (1990) (see Fig. 8).

It represents simple modulations between key signatures. While all kinds of
properties of this graph are easily analyzed, the question “Can it be drawn with
fewer than 12 crossings?” remained open. After 9.71 seconds of computation
time, our program proved that the crossing number is indeed 12 and produced
an alternative embedding that is not as nice as the original, though.

Acknowledgments. I am grateful to Michael Jünger who pointed out the open
problem of Knuth’s forthcoming book. Many thanks to Markus Chimani who
was co-author of most cited papers on the crossing number, and who did all
computations with his code.
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