
DNA Computer

DNA Computer can store billions of times more information then your PC hard drive
and solve complex problems in a less time.We know that computer chip
manufacturers are racing to make the next microprocessor that will more faster.
Microprocessors made of silicon will eventually reach their limits of speed and
miniaturization. Chips makers need a new material to produce faster computing
speeds.
To understand DNA computing lets first examine how the conventional computer
process information. A conventional computer performs mathematical operations by
using electrical impulses to manipulate zeroes and ones on silicon chips. A DNA
computer is based on the fact the information is “encoded” within deoxyribonucleic
acid (DNA) as as patterns of molecules known as nucleotides. By manipulating the
how the nucleotides combine with each other the DNA computer can be made to
process data. The branch of computers dealing with DNA computers is called DNA
Computing.
The concept of DNA computing was born in 1993, when Professor Leonard Adleman,
a mathematician specializing in computer science and cryptography accidentally
stumbled upon the similarities between conventional computers and DNA while
reading a book by James Watson. A little more than a year after this, In 1994,
Leonard M. Adleman, a professor at the University of Southern California, created a
storm of excitement in the computing world when he announced that he had solved a
famous computation problem. This computer solved the traveling salesman problem
also known as the “Hamiltonian path" problem,which is explained later. DNA was
shown to have massively parallel processing capabilities that might allow a DNA
based computer to solve hard computational problems in a reasonable amount of time.
There was nothing remarkable about the problem itself, which dealt with finding the
shortest route through a series of points. Nor was there anything special about how
long it took Adleman to solve it — seven days — substantially greater than the few
minutes it would take an average person to find a solution. What was exciting about
Adleman’s achievement was that he had solved the problem using nothing but
deoxyribonucleic acid (DNA) and molecular chemistry.

2. Some Informations About DNA

“Deoxyribonucleic acid”. The molecules inside cells that carry genetic information
and pass it from one generation to the next. See mitosis, chromosomes.
We have heard the term DNA a million times. You know that DNA is something
inside cells .We know that each and every one looks different and this is because of
they are having different DNA.
Have you ever wondered how the DNA in ONE egg cell and ONE sperm cell can
produce a whole human being different from any other? How does DNA direct a cell's
activities? Why do mutations in DNA cause such trouble (or have a positive effect)?
How does a cell in your kidney "know" that it's a kidney cell as opposed to a brain

cell or a skin cell or a cell in your eye? How can all the information needed to
regulate the cell's activities be stuffed into a tiny nucleus?
A basic tenet is that all organisms on this planet, however complex they may
beperceived to be,are made of the same type of genetic blueprint.The mode by which
that blue print is coded is the factor that decides our physical makeup-from color of
our eyes to what ever we are human.
To begin to find the answers to all these questions, you need to learn about the
biological molecules called nucleic acids.
An organism (be it bacteria, rosebush, ant or human) has some form of nucleic acid
Which is the chemical carrier of its genetic information. There are two types of
nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) which code
for all the information that determines the nature of the organism's cells. As a matter
of fact, DNA codes for all the instructions needed for the cell to perform different
functions. Did you know that human DNA contains enough information to produce
about 100,000 proteins?
Genes are made up of DNA ,which is shaped like a twisted ladder with rungs made up
of molecules called nucleotide bases linked together in specific pairs.The arrangement
of these bases along the DNA provides the cell with instructions on making proteins.
DNA is tightly coiled into rod-shaped structures called chromosomes, which are
stored in the nucleus of the cell. There are 22 pairs of chromosomes in each body cell
plus two sex chromosomes.

2.1) Structure of DNA

This structure has two helical chains each coiled round the same axis (see diagram).
We have made the usual chemical assumptions, namely, that each chain consists of
phosphate diester groups joining ß-D-deoxyribofuranose residues with 3',5' linkages.
The two chains (but not their bases) are related by a dyad perpendicular to the fibre
axis. Both chains follow right- handed helices, but owing to the dyad the sequences of
the atoms in the two chains run in opposite directions.
There is a residue on each every 3.4 A. in the z-direction. We have assumed an angle
of 36° between adjacent residues in the same chain, so that the structure repeats after
10 residues on each chain, that is, after 34 A. The distance of a phosphorus atom from
the fibre axis is 10 A. As the phosphates are on the outside, cations have easy access.
The structure is an open one, and its water content is rather high. At lower water
contents we would expect the bases to tilt so that the structure could become more
compact.
The novel feature of the structure is the manner in which the two chains are held
together by the purine and pyrimidine bases. The planes of the bases are
perpendicular to the fibre axis. The are joined together in pairs, a single base from the
other chain, so that the two lie side by side with identical z-co-ordinates. One of the
pair must be a purine and the other a pyrimidine for bonding to occur.
The hydrogen bonds are made as follows : purine position 1 to pyrimidine position 1
; purine position 6 to pyrimidine position 6.
If it is assumed that the bases only occur in the structure in the most plausible
tautomeric forms (that is, with the keto rather than the enol configurations) it is found
that only specific pairs of bases can bond together. These pairs are : adenine (purine)
with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine).

In other words, if an adenine forms one member of a pair, on either chain, then on
these assumptions the other member must be thymine ; similarly for guanine and
cytosine. The sequence of bases on a single chain does not appear to be restricted in
any way. However, if only specific pairs of bases can be formed, it follows that if the
sequence of bases on one chain is given, then the sequence on the other chain is
automatically determined.
It has been found experimentally (3,4) that the ratio of the amounts of adenine to
thymine, and the ration of guanine to cytosine, are always bery close to unity for
deoxyribose nucleic acid.
It is probably impossible to build this structure with a ribose sugar in place of the
deoxyribose, as the extra oxygen atom would make too close a van der Waals contact.
The previously published X-ray data (5,6) on deoxyribose nucleic acid are insufficient
for a rigorous test of our structure. So far as we can tell, it is roughly compatible with
the experimental data, but it must be regarded as unproved until it has been checked
against more exact results. Some of these are given in the following communications.
We were not aware of the details of the results presented there when we devised our
structure, which rests mainly though not entirely on published experimental data and
stereochemical arguments.
It has not escaped our notice that the specific pairing we have postulated immediately
suggests a possible copying mechanism for the genetic material.

2.2) Arrangement of Nucleotieds in DNA

One strands

Strands of DNA are long polymers of millions of linked nucleotides. These
nucleotides consist of one of four nitrogen bases, a five carbon sugar and a phosphate
group. The nucleotides that make up these polymers are named alter,the nitrogen
bases that comprise it, namely, Adenine (A), Cytosine (C), Guanine (G), and Thymine
(T). These nucleotides only combine in such a way that C always pairs with G, and T
always pairs with A. These two strands of a DNA molecule are anti-parallel in that
each strand runs in a opposite direction. Here below figure shows two strands of DNA
and the bonding principles of the four types of nucleotides.
The linkage of the sugar-phosphate "backbone" of a single DNA strand is such that
there is a directionality. That is, the phosphate on the 5' carbon of deoxyribose is
linked to the 3' carbon of the next deoxyribose. This lends a directionality to a DNA
strand which is said to have a 5' to 3' direction. The two strands of a DNA double
helix are arranged in opposite directions and are said to be anti-parallel in that one
strand is 5' - 3' and the complementary strand is 3' - 5'.

Double Helix

The particular order of the bases arranged along the suger-phosphate backbone is
called the DNA sequnce and the combinations of the four nucleotides in the estimated
millions long polymer strands results in a billions of combinations within a single
DNA double helix. These massive amounts of combinations allow for the multitude
of differences between every living thing on the plane-form the large scale (for
example, mammals as opposed to plants)to the small scale (differences in human hair
colour). Here the above fig. Shows the double helix shape of the DNA.

 3. Operations on DNA

While a number of equivalent formalizations exist, we follow the descriptions. Note
that the types of operations available are result of the capability of molecular biology
rather than the wishes of algorithms designers. Also note that this algorithms are
performed in constant time on testtubes which, for the sake of this discussion, may be
of arbitrary size this operations are:

1) MERGE

This is the simple operations of combining the contents of two test tubes in a third
tube.

2) ANNEAL

This is the process by which complementary strands of DNA are paired to form the
famous double-helix structure of Watson and crick. Annealing is achieved by cooling
a DNA solution, which encourages pairing. Adleman uses this in step 1 to generate all
legal paths through the graph.

3) MELT

Melting is inverse operation of annealing. By heating the contents of a tube, double-
stranded DNA sequences are denatured, or separated into its two single-stranded
parts.

4) SEPERATION BY LENGTH

The contents of test tube can be separated by increasing length. This is achieved by
hel electrophoresis, whereby longer strands travel more slowly through the gel. This
operation was used by Adleman in step 3 of his solution to HP.

5) SEPERATION BY SEQUENCE

This operation allows one to remove from solution all the DNA strands that contain a
desired sequence. This is performed by generating the strands whose complement is
the desired sequence. This newly generated strands is attached to magnetic substance
which is used to extract the sequences after annealing. This operation crux of
Adleman’s step 4.

6) COPYING/AMPLIFICATION

Copies are made of DNA strands in a test tube. The strands to be copied must have
known sequences at both the beginning and end in order for this operation to be
performed.
7) APPEND

This process makes a DNA strand longer by adding a character or strand to the end of
each sequence.

8) DETECT

It is also possible to analyze test tube inorder to determine whether or not it contains
atleast one strand of DNA.
This operation, for example, is the last in Adleman’s algorithm where we attempt to
find a DNA sequence that has survived the previous steps.

4. Aldeman’s Hamilton path problem
 The Hamiltonian Path problem

In 1994, Leonard M. Adleman solved an unremarkable computational problem with a
remarkable technique. It was a problem that a person could solve it in a few moments
or an average desktop machine could solve in the blink of an eye. It took Adleman,
however, seven days to find a solution. Why then was this work exceptional? Because
he solved the problem with DNA. It was a landmark demonstration of computing on
the molecular level.
The type of problem that Adleman solved is a famous one. It's formally known as a
directed Hamiltonian Path (HP) problem, but is more popularly recognized as a
variant of the so-called "traveling salesman problem." In Adleman's version of the
traveling salesman problem, or "TSP" for short, a hypothetical salesman tries to find a
route through a set of cities so that he visits each city only once. As the number of
cities increases, the problem becomes more difficult until its solution is beyond
analytical analysis altogether, at which point it requires brute force search methods.
TSPs with a large number of cities quickly become computationally expensive,
making them impractical to solve on even the latest super-computer. Adleman’s
demonstration only involves seven cities, making it in some sense a trivial problem
that can easily be solved by inspection. Nevertheless, his work is significant for a
number of reasons.
It illustrates the possibilities of using DNA to solve a class of problems that is
difficult or impossible to solve using traditional computing methods.
It's an example of computation at a molecular level, potentially a size limit that may
never be reached by the semiconductor industry. It demonstrates unique aspects of
DNA as a data structure. It demonstrates that computing with DNA can work in a
massively parallel fashion.

5. The Adleman’s experiment

There is no better way to understand how something works than by going through an
example step by step. So let’s solve our own directed Hamiltonian Path problem,
using the DNA methods demonstrated by Adleman. The concepts are the same but the
example has been simplified to make it easier to follow and present.
Suppose that I live in Boston, and need to visit four cities: Atlanta, San Diego ,
St.Louis, and NY, with NY being my final destination. The airline I’m taking has a

specific set of connecting flights that restrict which routes I can take (i.e. there is a
flight from Boston. to San Diego, but no flight from St.Louis to San Diego). What
should my itinerary be if I want to visit each city only once?
Figure 1. A sample traveling salesman problem involving the shortest path connecting all cities.
Arrows indicate the direction that someone can travel. For example, a voyager can leave Atlanta and
arrive in St. Louis, and vice versa

It should take you only a moment to see that there is only one route. Starting from
Boston you need to fly to San Diego , Atlanta, St.Louis and then to N.Y. Any other
choice of cities will force you to miss a destination, visit a city twice, or not make it to
N.Y. For this example you obviously don’t need the help of a computer to find a
solution. For six, seven, or even eight cities, the problem is still manageable.
However, as the number of cities increases, the problem quickly gets out of hand.
Assuming a random distribution of connecting routes, the number of itineraries you
need to check increases exponentially.
Pretty soon you will run out of pen and paper listing all the possible routes, and it
becomes a problem for a computer.....or perhaps DNA. The method Adleman used to
solve this problem is basically the shotgun approach mentioned previously. He first
generated all the possible itineraries and then selected the correct itinerary. This is the
advantage of DNA. It’s small and there are combinatorial techniques that can quickly
generate many different data strings. Since the enzymes work on many DNA
molecules at once, the selection process is massively parallel.
Specifically, the method based on Adleman’s experiment would be as follows:

1) Generate all possible routes.
2) Select itineraries that start with the proper city and end with the final city.
3) Select itineraries with the correct number of cities.
4) Select itineraries that contain each city only once.

All of the above steps can be accomplished with standard molecular biology
techniques.

Part I: Generate all possible routes

Strategy : Encode city names in short DNA sequences. Encode itineraries by
connecting the city sequences for which routes exist.

DNA can simply be treated as a string of data. For example, each city can be
represented by a "word" of six bases:

Boston GCTACG
San Diego CTAGTA
Atlanta TCGTAC
St.Louis CTACGG
New York ATGCCG

The entire itinerary can be encoded by simply stringing together these DNA
sequences that represent specific cities. For example, the route from Boston -> San
Diego -> Atlanta -> St.Louis -> New York would simply be

GCTACGCTAGTATCGTACCTACGGATGCCG, or equivalently it could be
represented in double stranded form with its complement sequence.
So how do we generate this? Synthesizing short single stranded DNA is now a routine
process, so encoding the city names is straightforward. The molecules can be made by
a machine called a DNA synthesizer or even custom ordered from a third party.
Itineraries can then be produced from the city encodings by linking them together in
proper order. To accomplish this you can take advantage of the fact that DNA
hybridizes with its complimentary sequence.
For example, you can encode the routes between cities by encoding the compliment
of the second half (last three letters) of the departure city and the first half (first three
letters) of the arrival city. For example the route between St.Louis (CTACGG) and
NY (ATGCCG) can be made by taking the second half of the coding for St.Louis
(CGG) and the first half of the coding for NY (ATG). This gives CGGATG. By
taking the complement of this you get, GCCTAC, which not only uniquely represents
the route from St.Louis to NY, but will connect the DNA representing St.Louis and
NY by hybridizing itself to the second half of the code representing St.Louis (...CGG)
and the first half of the code representing NY (ATG...). For example:
Random itineraries can be made by mixing city encodings with the route encodings.
Finally, the DNA strands can be connected together by an enzyme called ligase. What
we are left with are strands of DNA representing itineraries with a random number of
cities and random set of routes. For example:

We can be confident that we have all possible combinations including the correct one
by using an excess of DNA encodings, say 10^13 copies of each city and each route
between cities. Remember DNA is a highly compact data format, so numbers are on
our side.

Part II: Select itineraries that start and end with the correct cities

Strategy: Selectively copy and amplify only the section of the DNA that starts with
LA and ends with NY by using the Polymerase Chain Reaction.
After Part I, we now have a test tube full of various lengths of DNA that encode
possible routes between cities. What we want are routes that start with Boston and end
with NY. To accomplish this we can use a technique called Polymerase Chain
Reaction (PCR), which allows you to produce many copies of a specific sequence of
DNA. PCR is an iterative process that cycles through a series of copying events using
an enzyme called polymerase. Polymerase will copy a section of single stranded DNA
starting at the position of a primer, a short piece of DNA complimentary to one end of
a section of the DNA that you're interested in.
By selecting primers that flank the section of DNA you want to amplify, the
polymerase preferentially amplifies the DNA between these primers, doubling the
amount of DNA containing this sequence. After many iterations of PCR, the DNA
you're working on is amplified exponentially. So to selectively amplify the itineraries
that start and stop with our cities of interest, we use primers that are complimentary to
Boston and NY. What we end up with after PCR is a test tube full of double stranded
DNA of various lengths, encoding itineraries that start with Boston and end with NY.

Part III: Select itineraries that contain the correct number of cities

Strategy: Sort the DNA by length and select the DNA whose length corresponds to 5
cities.
Our test tube is now filled with DNA encoded itineraries that start with Boston and
end with NY, where the number of cities in between Boston and NY varies. We now
want to select those itineraries that are five cities long. To accomplish this we can use
a technique called Gel Electrophoresis, which is a common procedure used to resolve
the size of DNA. The basic principle behind Gel Electrophoresis is to force DNA
through a gel matrix by using an electric field. DNA is a negatively charged molecule
under most conditions, so if placed in an electric field it will be attracted to the
positive potential.
However since the charge density of DNA is constant (charge per length) long pieces
of DNA move as fast as short pieces when suspended in a fluid. This is why you use a
gel matrix. The gel is made up of a polymer that forms a meshwork of linked strands.
The DNA now is forced to thread its way through the tiny spaces between these
strands, which slows down the DNA at different rates depending on its length. What
we typically end up with after running a gel is a series of DNA bands, with each band
corresponding to a certain length. We can then simply cut out the band of interest to
isolate DNA of a specific length. Since we known that each city is encoded with 6
base pairs of DNA, knowing the length of the itinerary gives number of cities. In this
case we would isolate the DNA that was 30 base pairs long (5 cities times 6 base
pairs).

Part IV: Select itineraries that have a complete set of cities

Strategy: Successively filter the DNA molecules by city, one city at a time. Since the
DNA we start with contains five cities, we will be left with strands that encode each
city once.
DNA containing a specific sequence can be purified from a sample of mixed DNA by
a technique called affinity purification. This is accomplished by attaching the
compliment of the sequence in question to a substrate like a magnetic bead. The beads
are then mixed with the DNA. DNA, which contains the sequence you're after then
hybridizes with the complement sequence on the beads. These beads can then be
retrieved and the DNA isolated.
So we now affinity purify fives times, using a different city complement for each run.
For example, for the first run we use Boston.'-beads (where the ' indicates compliment
strand) to fish out DNA sequences which contain the encoding for Boston (which
should be all the DNA because of step 3), the next run we use Atlanta '-beads, and
then San Diego '-beads, St.Louis '-beads, and finally NY'-beads.
The order isn’t important. If an itinerary is missing a city, then it will not be "fished
out" during one of the runs and will be removed from the candidate pool. What we are
left with are the are itineraries that start in Boston, visit each city once, and end in
NY. This is exactly what we are looking for. If the answer exists we would retrieve it
at this step.

Reading out the answer

One possible way to find the result would be to simply sequence the DNA strands.
However, since we already have the sequence of the city encodings we can use an
alternate method called graduated PCR. Here we do a series of PCR amplifications
using the primer corresponding to Boston, with a different primer for each city in
succession. By measuring the various lengths of DNA for each PCR product we can
piece together the final sequence of cities in our itinerary. For example, we know that
the DNA itinerary starts with Boston and is 30 base pairs long, so if the PCR product
for the LA and Atlanta primers was 24 base pairs long, you know Atlanta is the fourth
city in the itinerary (24 divided by 6). Finally, if we were careful in our DNA
manipulations the only DNA left in our test tube should be DNA itinerary encoding
Boston, San Diego, St.Louis, Atlanta, and NY. So if the succession of primers used is
Boston & San Diego, Boston & St.Louis, Boston & Atlanta, and Boston & NY, then
we would get PCR products with lengths 12, 18, 24, and 30 base pairs.

Caveats

Adleman's experiment solved a seven city problem, but there are two major
shortcomings preventing a large scaling up of his computation. The complexity of the
traveling salesman problem simply doesn’t disappear when applying a different
method of solution - it still increases exponentially. For Adleman’s method, what
scales exponentially is not the computing time, but rather the amount of DNA.
Unfortunately this places some hard restrictions on the number of cities that can be
solved; after the Adleman article was published, more than a few people have pointed
out that using his method to solve a 200 city HP problem would take an amount of
DNA that weighed more than the earth. Another factor that places limits on his
method is the error rate for each operation. Since these operations are not
deterministic but stochastically driven (we are doing chemistry here), each step
contains statistical errors, limiting the number of iterations you can do successively
before the probability of producing an error becomes greater than producing the
correct result. For example an error rate of 1% is fine for 10 iterations, giving less
than 10% error, but after 100 iterations this error grows to 63%.

Conclusions

So will DNA ever be used to solve a traveling salesman problem with a higher
number of cities than can be done with traditional computers? Well, considering that
the record is a whopping 13,509 cities, it certainly will not be done with the procedure
described above. It took this group only three months, using three Digital
AlphaServer 4100s (a total of 12 processors) and a cluster of 32 Pentium-II PCs. The
solution was possible not because of brute force computing power, but because they
used some very efficient branching rules. This first demonstration of DNA computing
used a rather unsophisticated algorithm, but as the formalism of DNA computing
becomes refined, new algorithms perhaps will one day allow DNA to overtake
conventional computation and set a new record.
On the side of the "hardware" (or should I say "wetware"), improvements in
biotechnology are happening at a rate similar to the advances made in the
semiconductor industry. For instance, look at sequencing; what once took a graduate

student 5 years to do for a Ph.D thesis takes Celera just one day. With the amount of
government funded research dollars flowing into genetic-related R&D and with the
large potential payoffs from the lucrative pharmaceutical and medical-related
markets, this isn't surprising. Just look at the number of advances in DNA-related
technology that happened in the last five years. Today we have not one but several
companies making "DNA chips," where DNA strands are attached to a silicon
substrate in large arrays (for example Affymetrix's genechip). Production technology
of MEMS is advancing rapidly, allowing for novel integrated small scale DNA
processing devices. The Human Genome Project is producing rapid innovations in
sequencing technology. The future of DNA manipulation is speed, automation, and
miniaturization.
And of course we are talking about DNA here, the genetic code of life itself. It
certainly has been the molecule of this century and most likely the next one.
Considering all the attention that DNA has garnered, it isn’t too hard to imagine that
one day we might have the tools and talent to produce a small integrated desktop
machine that uses DNA, or a DNA-like biopolymer, as a computing substrate along
with set of designer enzymes. Perhaps it won’t be used to play Quake IV or surf the
web -- things that traditional computers are good at -- but it certainly might be used in
the study of logic, encryption, genetic programming and algorithms, automata,
language systems, and lots of other interesting things that haven't even been invented
yet.

6. How DNA Computers Will Work

6.1) A Fledgling Technology

DNA computers can't be found at your local electronics store yet. The technology is
still in development, and didn't even exist as a concept a decade ago. In 1994,
Leonard Adleman introduced the idea of using DNA to solve complex mathematical
problems. Adleman, a computer scientist at the University of Southern California,
came to the conclusion that DNA had computational potential after reading the book
"Molecular Biology of the Gene," written by James Watson, who co-discovered the
structure of DNA in 1953. In fact, DNA is very similar to a computer hard drive in
how it stores permanent information about your genes.
Adleman is often called the inventor of DNA computers. His article in a 1994 issue of
the journal Science outlined how to use DNA to solve a well-known mathematical
problem, called the directed Hamilton Path problem, also known as the "traveling
salesman" problem. The goal of the problem is to find the shortest route between a
number of cities, going through each city only once. As you add more cities to the
problem, the problem becomes more difficult. Adleman chose to find the shortest
route between seven cities.
You could probably draw this problem out on paper and come to a solution faster than
Adleman did using his DNA test-tube computer. Here are the steps taken in the
Adleman DNA computer experiment:

Strands of DNA represent the seven cities. In genes, genetic coding is represented by
the letters A, T, C and G. Some sequence of these four letters represented each city
and possible flight path.

 These molecules are then mixed in a test tube, with some of these DNA strands
sticking together. A chain of these strands represents a possible answer.
Within a few seconds, all of the possible combinations of DNA strands, which
represent answers, are created in the test tube.
Adleman eliminates the wrong molecules through chemical reactions, which leaves
behind only the flight paths that connect all seven cities.
The success of the Adleman DNA computer proves that DNA can be used to calculate
complex mathematical problems. However, this early DNA computer is far from
challenging silicon-based computers in terms of speed. The Adleman DNA computer
created a group of possible answers very quickly, but it took days for Adleman to
narrow down the possibilities. Another drawback of his DNA computer is that it
requires human assistance. The goal of the DNA computing field is to create a device
that can work independent of human involvement.

Three years after Adleman's experiment, researchers at the University of Rochester
developed logic gates made of DNA. Logic gates are a vital part of how your
computer carries out functions that you command it to do. These gates convert binary
code moving through the computer into a series of signals that the computer uses to
perform operations. Currently, logic gates interpret input signals from silicon
transistors, and convert those signals into an output signal that allows the computer to
perform complex functions.
The Rochester team's DNA logic gates are the first step toward creating a computer
that has a structure similar to that of an electronic PC. Instead of using electrical
signals to perform logical operations, these DNA logic gates rely on DNA code. They
detect fragments of genetic material as input, splice together these fragments and form
a single output. For instance, a genetic gate called the "And gate" links two DNA
inputs by chemically binding them so they're locked in an end-to-end structure,
similar to the way two Legos might be fastened by a third Lego between them. The
researchers believe that these logic gates might be combined with DNA microchips to
create a breakthrough in DNA computing.
DNA computer components -- logic gates and biochips -- will take years to develop
into a practical, workable DNA computer. If such a computer is ever built, scientists
say that it will be more compact, accurate and efficient than conventional computers.
In the next section, we'll look at how DNA computers could surpass their silicon-
based predecessors, and what tasks these computers would perform.

7. COMPARISON OF DNA AND CONVENTIONAL
ELECTRONIC COMPUTERS

As we have discussed the concepts and characteristics of DNA Computer, we can
now compare the DNA Computers with Conventional Electronic Computers.

7.1) Similarities

1) Transformation of Data
Both DNA computers and electronic computers use Boolean logic (AND, OR,
NAND, NOR) to transform data. The logical command "AND" is performed by

separating DNA strands according to their sequences, and the command "OR" is done
by pouring together DNA solutions containing specific sequences. For example, the
logical statement "X or Y" is true if X is true or if Y is true. To simulate that, the
scientists would pour the DNA strands corresponding to "X" together with those
corresponding to "Y."[2][3]. Following is an example of how a Bio Chemical Inverter
works.
Bio-chemical Inverter: The characteristics of natural gene regulation systems can be
exploited to design in vivo logic circuits (Weiss et al., 1999).
How a biochemical inverter achieves the two states in digital inversion using genetic
regulatory elements? Here, the concentration of a particular messenger RNA (mRNA)
molecule represents a logic signal. In the first case, the input mRNA is absent and the
cell transcribes the gene for the output mRNA using RNA polymerase (RNAp)
molecules. In the second case, the input mRNA is present and the cell translates the
input mRNA into the input protein using ribosomes.
A digital inverter that consists of a gene encoding the instructions for protein B and
containing a region (P) to which protein A binds. When A is absent (left)—a situation
representing the input bit 0—the gene is active and B is formed—corresponding to an
output bit 1. When A is produced (right)—making the input bit 1—it binds to P and
blocks the action of the gene—preventing B from being formed and making the
output bit 0.
The input protein then binds specifically to the gene at the promoter site (labeled \P")
and prevents the cell from synthesizing the output mRNA.
Now more complete picture that explains the role of transcription and translation
cellular processes in inversion is explained here.
Biochemical inversion uses the transcription and translation cellular processes.
Ribosomal RNA translates the input mRNA into an amino acid chain, which then
folds into a three-dimensional protein structure. When the protein binds an operator of
the gene's promoter, it prevents transcription of the gene by RNA polymerase
(RNAp). In the absence of the repressor protein, RNAp transcribes the gene into the
output mRNA.
It depicts a functional model of the inverter derived from its biochemical reaction
phases. The first phase in inversion is the translation stage, denoted as L. The input
signal to this stage, and thus the inverter, corresponds to the concentration level of the
input mRNA, φA. Ribosomal RNA (rRNA) translates the input mRNA into the input
repressor protein, ψA , where L represents the steady state mapping between the
mRNA and protein concentrations. The relationship between the input mRNA and
repressor protein is initially linear, with increases in φA corresponding to increases in
ψA, until an asymptotic boundary is reached. The properties of this boundary are
determined by characteristics of the cell such as amino acid synthesis capabilities, the
efficiency of the ribosome-binding site, and mRNA stability. Since cells degrade
mRNA as well as protein molecules, constant synthesis of the input mRNA is needed
to maintain a steady level of the input repressor protein. In the second phase, input
protein monomers combine to form polymers that bind the operator, and subsequently
repress the transcription of the output gene.
The Functional composition of the inversion stages: the translation stage maps input
mRNA levels (ψA) to input protein levels (φA), the cooperative binding stage maps
input protein levels to bound operator levels (ρA), and the transcription stage maps
bound operator levels to output mRNA levels (ψZ). The degradation of the mRNA
and protein molecules is represented with the electrical ground symbol. The
degradation of mRNA is part of the translation stage, while the degradation of

proteins is part of the cooperative binding stage. The graphs illustrate the steady-state
relationships for each of these stages and the overall inversion function that results
from combining these stages.
This cooperative binding, which ensures that only dimerized proteins can bind the
DNA, decreases the digital noise. Let us define the concentration of operator that is
bound to the repressor, or the strength of the repression, as ρA. In addition, denote the
cooperative binding stage that occurs between ψA and ρA as C. In steady state, the
relationship between ψA and ρA is sigmoidal. At low levels of ψA, the strength of
repression does not increase significantly for increases in ρA because these
concentrations are too low for appreciable dimerization. At higher concentrations of
ψA, however, considerable dimerization occurs, resulting in a nonlinear increase in
repression activity. For values of ψA approaching saturation, the operator is mostly
bound, and repressor activity is close to maximal. At this point, increasing the
concentration of ψA does not increase repression, and instead causes the ψA/ρA curve
to move toward an asymptotic boundary. In this way, the cooperative binding stage
performs signal restoration in which the analog output signal better represents the
appropriate digital meaning than the corresponding analog input signal. Because each
stage of the computation reduces the noise in the system through signal restoration,
multiple inverters can be combined into more complex circuits, while still
maintaining or even increasing the overall reliability of the system.
In the final stage of the inverter, the transcription stage, RNA polymerase (RNAp)
transcribes the regulated gene and the input signal is inverted. Let us define Z to be
the output signal of the inverter and ψZ to be its corresponding mRNA concentration.
The transcription stage, with input ρA and output φZ, has a steady state relationship in
which increases in ρA correspond to monotonic decreases in φZ. During periods of
minimal repression, transcription progresses at rapid rates resulting in maximal
concentrations of φZ. However, for high levels of repression, the transcriptional
activity declines and the level of φZ drops.
Overall, the three stages combine to form a system that behaves as an inverter,
negating the input mRNA signal, φA, to yield the output mRNA signal, φZ.
Furthermore, with efficient signal restoration during the cooperative binding stage of
inversion, complex but reliable digital logic circuits are attainable.

2) Manipulation of Data
Electronic computers and DNA computers both store information in strings, which
are manipulated to do processes. Vast quantities of information can be stored in a test
tube. The information could be encoded into DNA sequences and the DNA could be
stored. To retrieve data, it would only be necessary to search for a small part of it - a
key word, for example – by adding a DNA strand designed so that its sequence sticks
to the key word wherever it appears on the DNA [3].

3) Computation Ability
All computers manipulate data by addition and subtraction. A DNA computer should
be able to solve a satisfiability problem with 70 variables and 1,000 AND-OR
connections. To solve it, assign various DNA sequences to represent 0’s and 1’s at the
various positions of a 70 digit binary number. Vast numbers of these sequences would
be mixed together, generating longer molecules corresponding to every possible 70-
digit sequence [2][3].

7.2) Differences

1) Size
Conventional computers are about 1 square foot for the desktop and another square
foot for the monitor. One new proposal is for a memory bank containing more than a
pound of DNA molecules suspended in about 1,000 quarts of fluid, in a bank about a
yard square. Such a bank would be more capacious than all the memories of all the
computers ever made.
The first ever-electronic computer (Eniac) took up a large room whereas the first
DNA computer (Adleman) was 100 micro liters. Adleman dubbed his DNA computer
the
TT-100, for test tube filled with 100 micro liters, or about one-fiftieth of a teaspoon of
fluid, which is all it took for the reactions to occur.

2) Representation of Data
DNA computers use Base4 to represent data, whereas electronic computers use Base2
in the form of 1’s and 0’s. The nitrogen bases of DNA are part of the basic building
blocks of life. Using this four letter alphabet, DNA stores information that is
manipulated by living organisms in almost exactly the same way computers work
their way through strings of 1’s and 0’s.

3) Parallelism
Electronic computers typically handle operations in a sequential manner. Of course,
there are multi-processor computers, and modern CPUs incorporate some parallel
processing, but in general, in the basic Von Neumann architecture computer [4],
instructions are handled sequentially. A von Neumann machine, which is what all
modern CPUs are, basically repeats the same "fetch and execute cycle" over and over
again; it fetches an instruction and the appropriate data from main memory, and it
executes the instruction. It does this many, many times in a row, really, really fast.
The great Richard Feynman [5], in his Lectures on Computation, summed up von
Neumann computers by saying, "the inside of a computer is as dumb as hell, but it
goes like mad!" DNA computers, however, are non-von Neuman, stochastic machines
that approach computation in a different way from ordinary computers for the purpose
of solving a different class of problems. Typically, increasing performance of silicon
computing means faster clock cycles (and larger data paths), where the emphasis is on
the speed of the CPU and not on the size of the memory.
For example, will doubling the clock speed or doubling your RAM give you better
performance? For DNA computing, though, the power comes from the memory
capacity and parallel processing. If forced to behave sequentially, DNA loses its
appeal. For example, let's look at the read and write rate of DNA. In bacteria, DNA
can be replicated at a rate of about 500 base pairs a second. Biologically this is quite
fast (10 times faster than human cells) and considering the low error rates, an
impressive achievement. But this is only 1000 bits/sec, which is a snail's pace when
compared to the data throughput of an average hard drive. But look what happens if
you allow many copies of the replication enzymes to work on DNA in parallel. First

of all, the replication enzymes can start on the second replicated strand of DNA even
before they're finished copying the first one. So already the data rate jumps to 2000
bits/sec. But look what happens after each replication is finished - the number of
DNA strands increases exponentially (2n after n iterations). With each additional
strand, the data rate increases by 1000 bits/sec. So after 10 iterations, the DNA is
being replicated at a rate of about 1Mbit/sec; after 30 iterations it increases to 1000
Gbits/sec. This is beyond the sustained data rates of the fastest hard drives.

4) Material
Obviously, the material used in DNA Computers is different than in Conventional
Electronic Computers. Generally, people take a variety of enzymes such as restriction
nuclease and ligase as the hardware of DNA Computers, encoded double-stranded or
single-stranded DNA molecules as software and data are stored in the sequences of
base pairs. As for conventional electronic computers, electronic devices compose
hardware. Software and data are stored in the organized structure of electronic devices
represented by the electrical signals.
The other difference between DNA Computers and conventional electronic computers
in material is the reusability. The materials used in DNA Computer are not reusable.
Whereas an electronic computer can operate indefinitely with electricity as its only
input, a DNA computer would require periodic refueling and cleaning. On the other
side, until now, the molecular components used are still generally specialized. In the
current research of DNA Computing, very different sets of oligonucleotides are used
to solve different problems.

5) Methods of Calculation:
By synthesizing particular sequences of DNA, DNA computers carry out calculations.
Conventional computers represent information physically expressed in terms of the
flow of electrons through logical circuits. Builders of DNA computers represent
information in terms of the chemical units of DNA. Calculating with an ordinary
computer is done with a program that instructs electrons to travel on particular paths;
with a DNA computer, calculation requires synthesizing particular sequences of DNA
and letting them react in a test tube [3]. As it is, the basic manipulations used for
DNA Computation include Anneal, Melt, Ligate, Polymerase Extension, Cut,
Destroy, Merge, Separate by Length which can also be combined to high level
manipulations such as Amplify, Separate by Subsequence, Append, Mark, Unmark.
And the most famous example of a higher-level manipulation is the polymerase chain
reaction (PCR).

8. Advantages of DNA Computers

1) Parallelism
“The speed of any computer, biological or not, is determined by two factors: (i) how
many parallel processes it has; (ii) how many steps each one can perform per unit
time. The exciting point about biology is that the first of these factors can be very
large: recall that a small amount of water contains about 1022 molecules. Thus,
biological computations could potentially have vastly more parallelism than
conventional ones.”[6]

In November of 1994, Leonard Adleman published a dramatic reminder that
computation is independent of any particular substrate. By using strands of DNA
annealing to each other, he was able to compute a solution to an instance of the
Hamiltonian path problem (HPP) (Figure 4). While working in formal language
theory and artificial selection of RNA had presaged the concept of using DNA to do
computation, these precursors had largely gone unnoticed in mainstream computer
science. Adleman’s work sparked intense excitement and marked the birth of a new
field, DNA computation [7].

The Hamiltonian Path problem

The goal is to find a path from the start city to the end city going through every city
only once.
The Hamiltonian Path problem is shown in Figure 3. To solve this problem Adleman
used a non-deterministic algorithm (brute force method) to solve this problem. The
main thinking of using DNA other than electronic computer to solve this problem is
the parallelism of DNA operations. In fact, the real interesting thing on the DNA
solution for the Hamiltonian path problems is that most input data grow just linearly
with the growth of the number of edges.
That means it is almost impossible to solve this kind of problems (NP or NP-
Compete) using a normal computer when the complexity of the problem grows
because they must try each option one at a time. While, as for DNA based computers,
just the quantity of DNA’s should grow exponentially but this is not a problem
because the quantity of DNA’s for all known problems is small enough. (In
reasonable concentrations, a liter of DNA solution can store up to 1022 bits of
information [8]) They can try all of the options at the same time, determining possible
solutions while weeding out wrong answers.
Let’s now look a little bit more deeply into the biochemical operation. In the cell,
DNA is modified biochemically by a variety of enzymes, which are tiny protein
machines that read and process DNA according to nature's design. There is a wide
variety and number of these "operational" proteins, which manipulate DNA on the
molecular level. For example, there are enzymes that cut DNA and enzymes that paste
it back together. Other enzymes function as copiers, and others as repair units.
Molecular biology, Biochemistry, and Biotechnology have developed techniques that
allow us to perform many of these cellular functions in the test tube.
It's this cellular machinery, along with some synthetic chemistry, that makes up the
palette of operations available for computation. Just like a CPU has a basic suite of
operations like addition, bit-shifting, logical operators (AND, OR, NOT NOR), etc.
that allow it to perform even the most complex calculations, DNA has cutting,
copying, pasting, repairing, and many others. And note that in the test tube, enzymes
do not function sequentially, working on one DNA molecules at a time. Rather, many
copies of the enzyme can work on many DNA molecules simultaneously. So this is
the power of DNA computing that it can work in a massively parallel fashion.

2) Gigantic memory capacity
Just as we have discussed, the other implicit characteristic of DNA Computer is its
gigantic memory capacity. Storing information in molecules of DNA allows for an
information density of approximately 1 bit per cubic nanometer. The bases (also
known as nucleotides) of DNA molecules, which represent the minimize unit of

information in DNA Computers, are spaced every 0.34 nanometers along the DNA
molecule (Figure 4), giving DNA a remarkable data density of nearly 18 Megabits per
inch. In two dimensions, if you assume one base per square nanometer, the data
density is over one million Gigabits per square inch. Compare this to the data density
of a typical high performance hard driver, which is about 7 gigabits per square inch --
a factor of over 100,000 smaller [8]. Researchers from Pacific Northwest National
Laboratory are tapping forces of nature to store information more permanently. The
researchers used artificial DNA sequences to encode portions of the text of the
children's song it's a Small World, added the sequences to bacteria DNA, allowed the
bacteria to multiply, and then extracted the message part of a DNA strand and
retrieved the encoded information. Because DNA is passed down through generations
of living organisms, information stored this way should survive for as long as the line
of organisms survives, said Pak Wong, a chief scientist at the Pacific Northwest
National Laboratory.
Storing information is DNA's natural function, said Wong. "We [are] taking
advantage of a time-tested, natural, nanoscale data storage technology perfected over
the last 3 billion years." The encoding method could be used to store any digital
information, he said. "Text, pictures, music -- anything you can send or receive over
the Web could be saved in this form."

3) Low Power Dissipation
“The potential of DNA-based computation lies in the fact that DNA has a gigantic
memory capacity and also in the fact that the biochemical operations dissipate so little
energy,” says University of Rochester computer scientist Mitsunori Ogihara [10].
DNA computers can perform 2 x 1019 ligation operations per joule. This is amazing,
considering that the second law of thermodynamics dictates a theoretical maximum of
34 x 1019 (irreversible) operations per joule (at 300K). Existing supercomputers
aren’t very energy-efficient, executing a maximum of 109 operations per joule [11].
Just think about the energy could be very valuable in future. So, this character of
DNA computers can be very important.
4) Suitable For Ambinatorial Problems:-
From the first day that DNA Computation is developed, Scientists used it to solve
combinatorial problems. In 1994, Leonard Adleman used DNA to solve one of
Hamiltonian Path problem -Traveling Salesman problem. After that Lipton used DNA
Computer to break Data Encryption Standard (DES) [12]. And then much of the work
on DNA computing has continued to focus on solving NP-complete and other hard
computational problems. In fact, experiments have proved that DNA Computers are
suitable for solving complex combinatorial problems, even until now, it costs still
several days to solve the problems like Hamiltonian Path problems. But the key point
is that Adleman's original and subsequent works demonstrated the ability of DNA
Computers to obtain tractable solutions to NP-complete and other hard computational
problems, while these are unimaginable using conventional computers.

5) Clean, Cheap And Available
Besides above characteristics, clean, cheap and available are easily found from
performance of DNA Computer. It is clean because people do not use any harmful
material to produce it and also no pollution generates. It is cheap and available
because you can easily find DNA from nature while it’s not necessary to exploit

mines and that all the work you should do is to extract or refine the parts that you
need from organism.
DNA processors are cheaper and cleaner than today's silicon-based microprocessors.
DNA resources are also more readily available than traditional microprocessor's. The
field is highly multidisciplinary, attracting a host of extremely bright computer
scientists, molecular biologists, geneticists, mathematicians, physicists, and others.
Because of DNA computer's massive parallel processing powers (about 10E20
computations a second), computations that would take years to be done on a
conventioal computer could be computed in minutes. Certain operations in DNA
computing are also over a billion times more energy efficient than conventional
computers. DNA stores information at a density of about one bit per cubed nm—
about a trillion times as efficiently as videotape. In addition to its potential
applications, such as DNA computation, nanofabrication, storage devices, sensing,
and healthcare, biocomputation also has implications for basic scientific research.

8.1) Key benefits

Today, the new Pentium 4 has a massive 42 million electronic switches. According to
recent stastics, one cubic-centimeter of DNA material can store a upto 10E21 bits of
information, whereas the current computer have a maximum memory capacity of
10E14. As estimated, a single DNA computer could contain more data compared to
all the existing computer memories combined. Adleman’s experiment was carried out
at 1.2x 10E18 operations per second. This is approximately 1,200,000 times faster
than any existing super computing device.

The following are the benefits of DNA computer:

1) PREDICTABILITY

After a year in lab, Adleman realized that strands of DNA behave much like
mathematical equations. DNA’s chemical bases-adenine, thymine,cystosine, and
guanine—hook up in a predictable manner:adenine always links with thymine and
cytosine with guanine. Because of regularity of pattern Adleman hypothesized that he
could use molecules to process data the same way PCs use microprocessors.

2) DNA DIRECTIONS

Over a period of time, Adleman performed a series of biochemical reactions to
eliminate the wrong answers—strands encoding routes that either started or ended in
the wrong city, those that visited a city more than once, and so on. When all the
wrong answers had been destroyed, Adleman was able to look under the microscope
and find only strands that carried the right answers.
Adleman’s experiment used just seven cities, a problem that isn’t hard to solve on
modern computers. But Adleman’s biological computations showed that DNA has the
potential to solve more complex problem than even the most advance electronic
computer can. The fastest supercomputer wouldn’t be able to solve a problem if more

than about 50 cities, Adleman says. He believes that a testtube full of DNA would
solve the problem with as many as 200 cities.
First, DNA is incredibly enery-efficinet.Take ligase, a molecule whose job is to stick
strands of DNA together. With just one joule of energy – the amount of energy a
human expends to lift one kilogram one meter, ligase molecules can perform 20x10
the 18th operations, Adleman says. Thats a million times 20 operations. Such
efficiency push computing to new levels since electronics are limited by the amount
of power—and the heat it gives off—needed to run increasingly sophisticated
operations.

3) INCREDIBLY CHEAP

DNA is also a wonderful way to store information. One gram of genetic material,
which would occupy about one cubic centimeter, can hold as much information as 1
trillion CDs, according to Adleman. It’s also incredibly cheap: Commercial labs sell a
molecule of SNA for about one-thousand trillionth of a cent. The cost is about $30.
for a DNA sequence big enough to compute on. Intel sells its latest P4 chiop for more
than $500. “DNA has been storing the blueprint of life for several billion years,” says
Adleman. “its powers are untapped legacy for the 21st century.

4) HALF-HOUR TEST

The first practical applications are also emerging. Last January Olympus optical
company and the university of TOKYO claim to have jointly develop a fast way
identifying genes associated with diseases. Researchers developed a process that
synthesizes 10,000 different DNA strands that are known to bond with genes related
to specific diseases such as cancer. The strand are numbered and mixed with fluid
containing genes extracted from the patient. The fluid is than tested to determine
which genes are functioning in the patient’s cells by reading the number of DNA
strands that appear after a series of biochemical reactions. Researchers can complete a
single test in about 3 hours, about one-half to one-third time taken by conventional
biological methods.

5) AMAZING TOOL TEST

Thus, as the complexity of problems increases, the manual labour require for DNA
computing would outweight the benefits of super fast computation. “Here we have the
most amazing tool chest we have ever seen. We know it’s great because it was used to
build you and me, “enthuses Adleman. “Right now, though, we are very clumsy with
it.”
DNA computers have the potential to take computing to new levels, picking up where
Moore’s law leaves off. There are several advantages of using DNA instead of
silicon:

1) As long as there are cellular organisms, there will always be a supply of DNA.
2) The large supply of DNA makes a cheap resource.
3) Unlike the toxic materials use to make traditional microprocessors, DNA biochips
can be made cleanly.
4) DNA computers are many times smaller than today’s computer.

9. DRAWBACKS

1) Occasionally Slow
The speed of each process in DNA Computing is still an open issue until now. In
1994, Adleman’s experiment took still a long time to perform. The entire experiment
took Adleman 7 days of lab work [13]. Adleman asserts that the time required for an
entire computation should grow linearly with the size of the graph. This is true as long
as the creation of each edge does not require a separate process.
Practical experiments proved that when people using DNA to solve more complex
problems such like SAT problems, more and more laborious separation and detection
steps are required, which will only increase as the scale increases. But these problems
may be overcomed by using autonomous methods for DNA computation, which
execute multiple steps of computation without outside intervention. Actually,
autonomous DNA computations were first experimentally demonstrated by Hagiya et
al. [14] using techniques similar to the primer extension steps of PCR and by Reif,
Seeman et al. [15] using the self-assembly of DNA nanostructures [16]. Recently,
Shapiro et al. reported the use of restriction enzymes and ligase [2] on the Nature
(Figure 5). They demonstrated a realization of a programmable finite automaton
comprising DNA and DNA-manipulating enzymes that solves computational
problems autonomously. In their implementation, 1012 automata sharing the same
software run independently and in parallel on inputs (which could, in principle, be
distinct) in 120 micro liters solution at room temperature at a combined rate of 109
transitions per second with a transition fidelity greater than 99.8%. Thus, the
laborious processes can be reduced largely. We can forecast that this problem can be
settled very well in not long time.

2) Hydrolysis
The DNA molecules can fracture. Over the six months you're computing, your DNA
system is gradually turning to water. DNA molecules can break – meaning a DNA
molecule, which was part of your computer, is fracture by time. DNA can deteriorate.
As time goes by, your DNA computer may start to dissolve. DNA can get damaged as
it waits around in solutions and the manipulations of DNA are prone to error. Some
interesting studies have been done on the reusability of genetic material in more
experiments, a result is that it is not an easy task recovering DNA and utilizing it
again.

3) Information Untransmittable
The model of the DNA computer is concerned as a highly parallel computer, with
each DNA molecule acting as a separate process. In a standard multiprocessor
connection-buses transmit information from one processor to the next. But the
problem of transmitting information from one molecule to another in a DNA
computer has not yet to be solved. Current DNA algorithms compute successfully
without passing any information, but this limits their flexibility.

4) Reliability Problems
Errors in DNA Computers happen due to many factors. In 1995, Kaplan et al. [17] set
out to replicate Adleman’s original experiment, and failed. Or to be more accurate,
they state, “At this time, we have carried out every step of Adleman’s experiment, but
we have not got an unambiguous final result.” There are a variety of errors that can

come along with experimentation. Typical errors are annealing errors, errors in PCR,
errors during affinity separation (Purification).

10. APPLICATIONS OF DNA COMPUTER

10.1) Massively Parallel Processing

The primary advantage offered by most proposed models of DNA based computation
is the ability to handle millions of operations in parallel. The massively parallel
processing capabilities of DNA computers may give them the potential to find
tractable solutions to otherwise intractable problems, as well as potentially speeding
up large, but otherwise solvable, polynomial time problems requiring relatively few
operations. The use of DNA to perform massive searching and related algorithms will
be referred to as "classic" DNA computation for the purposes of this discussion.
Proposed "classical" models of DNA computers derive their potential advantage over
conventional computers from their ability to:

- Perform millions of operations simultaneously;
- Generate a complete set of potential solutions;
- Conduct large parallel searches; and
- Efficiently handle massive amounts of working memory.

These models also have some of the following drawbacks :

- Each stage of parallel operations requires time measured in hours or days, with
extensive human or mechanical intervention between steps;
- Generating solution sets, even for some relatively simple problems, may require
impractically large amounts of memory; and
- Many empirical uncertainties, including those involving: actual error rates, the
generation of optimal encoding techniques, and the ability to perform necessary bio-
operations conveniently in vitro or in vivo.

With these qualities in mind, the comparison between conventional computing and
"classic" DNA computation comes down to one of depth versus breadth. A working
DNA based computer might hold an advantage over conventional computers when
applied to decomposable problems, those problems that are able to be divided into
separate, non-sequential tasks, because they can hold so much data in memory and
conduct so many operations at once. However, due to the length of time required to
conduct the biochemical operations, non-decomposable problems, those requiring
many sequential operations, are likely to remain much more efficient on a
conventional computer. [2]
Within the paradigm of "classic" DNA computation there exists many different
models, each with different advantages and degrees of applicability to classes of
problems. An example of one model differing from Adleman's original search
algorithm is the surface-based DNA algorithm used to solve the minimal set cover
problem in [8]. This technique proposes to decrease the potential for error from lost

DNA strands by affixing them to a surface of glass or silicon. The efficiency of their
algorithm is dependent on the method of encoding quantity by strand length so the
authors have speculated that such a model might be inappropriate for application to
problems where the validity of a solution is not proportional to its size. A surface-
based approach to DNA computation was also considered in [13], which suggests the
products of bit operations could be identified using optical readers scanning for the
relative surface position of hybrid double strands consisting of a previously unknown
bitstring and a value being held by that bit. The ability to read output in this manner
may drastically increase the feasibility of implementing a DNA computer outside the
conventional laboratory setting. It might also encourage the development of
DNA/Electronic computer hybrids, with different problem types being handled by
different components, and the electronic portion conveying the output to the user.
Another model [10] makes use of 3-Dimensional DNA structures to reduce errors and
necessary steps. This method of using the structral properties of DNA may also lead
to more efficient storage mechanisms.
Classical DNA computing techniques have already been theoretically applied to a real
life problem: breaking the Data Encryption Standard (DES). Although this problem
has already been solved using conventional techniques in a much shorter time than
proposed by the DNA methods, the DNA models are much more flexible, potent, and
sender of cost effective.
DES is a method of encrypting 64-bit messages with a 56-bit key, used extensively in
the United States. Electronic keys are normally a string of data used to code and/or
decode sensitive messages. By finding the appropriate key to a set of encrypted
messages, one can either read encoded messages or pose as the such messages. Using
a special purpose electronic computer and differential cryptanalysis, it has been
shown that the key to DES can be found in several days. However, to do so would
require 2^43 examples of corresponding encrypted and unencrypted messages (known
as plain-text/cipher-text pairs) and would slow down by a factor of 256 if the strength
of the encrypting key was increased to 64-bits. In [6] it is proposed that DES could be
broken using a DNA based computer and a search algorithm similar to Adleman's
original technique. This procedure would be expected to take 4 months, but would
only need a single plain-text/cipher-text pair or an example of cipher text with several
plain text candidates to be successful. The feasibility of applying DNA computation
to this problem was also addressed in [3] using a more refined algorithm (the sticker
model approach) which enabled the researchers to suggest that they could solve the
problem using less than a gram of DNA, an amount that could presumably be handled
by a desk top sized machine. Both models would likely be more cost and energy
effective than the expensive electronic processors required by conventional means,
but are entirely theoretical. The first model ignores error rates incurred though
laboratory techniques and the inherent properties of the DNA being used. The second
model requires an error rate approaching .0001, with higher rates substantially
affecting the volume of DNA required. Despite these assumptions, these models show
that existing methods of DNA computation could be used to solve a real life problem
in a way that is both practical and superior to methods used by conventional
computers. In [3] it is also demonstrated that such benefits can be obtained despite
error rates that would be unacceptable in an electronic computer and that may be
unavoidable in a molecular one.

10.2) Storage and Associative Memory

DNA might also be used to mirror, and even improve upon, the associative
capabilities of the human brain. In [4] Baum proposed a method for making a large
content addressable memory using DNA. A truly content addressable memory occurs
when a data entry can be directly retrieved from storage by entering an input that most
closely resembles it over other entries in memory. This input may be very incomplete,
with a number of wildcards, and in an associative memory might even contain bits
that do not actually occur within the closest match. This contrasts with a conventional
computer memory, where the specific address of a word must be known to retrieve it.
Rather, the use of this technique would replicate what is thought by many to be a key
factor in human intelligence.
Baum's models for a DNA associative memory are quite simple, and build from the
techniques used in other areas of DNA computation. Storing a word could be done by
assigning a specific DNA subsequence to each component value pair and building a
fixed length word from these subsequences. To then retrieve the word closest to the
input, one would introduce marked complementary subsequences into the storage
medium and chose the molecule that has the most matches to this input. This
technique could be further refined to more closely approximate the brain by
appending words to only store attributes that an object has, rather than wasting space
using '0's to represent attributes that an object does not have.
Baum has further speculated that a memory could be constructed where only portions
of the data are content-addressable and associative, with other information on an
object compactly stored in addresses relative to the associative portion of the entry.
To save on operating costs and reduce error frequency, this portion of the memory
could be kept in double-stranded form.
Considering the brain's limit of about 10^15 synapses and Feynman's low-end
estimate that the brain can distinguish about 10^6 concepts, such a DNA based
associative memory could have certain advantages over the brain. Without accounting
for redundant molecules, Baum estimates that a large bath tub of DNA, about 50g in
1000L, could hold over 10^20 words. In attempting to come up with practical uses for
this memory scheme one will have to weigh the massive size and ability to retrieve in
an associative manner against the slow retrieval times necessitated by current
biomolecular engineering techniques. And, although Baum's simplistic approach has
accounted for some error rates, his initial paper remains quite speculative.

10.3) DNA2DNA Applications

Another area of DNA computation exists where conventional computers clearly have
no current capacity to compete. This is the concept of DNA2DNA computations as
suggested in [12] and identified as a potential killer app. DNA2DNA computations
involve the use of DNA computers to perform operations on unknown pieces of DNA
without having to sequence them first. This is achieved by re-coding and amplifying
unknown strands into a redundant form so that they can be operated on according to
techniques similar to those used in the sticker model of DNA computation. Many of
the errors inherent in other models of DNA computing can hopefully be ignored in
DNA2DNA computing because there will be such a high number of original strands
available for operations.

The potential applications of re-coding natural DNA into a computable form are many
and include:

- DNA sequencing;
- DNA fingerprinting;
- DNA mutation detection or population screening; and
- Other fundamental operations on DNA.

In the case of DNA mutation detection, the strand being operated on would already be
partially known and therefore fewer steps would need to be taken to re-code the DNA
into a redundant form applicable for computational form.
There are other models of DNA computation that suggest that DNA might be used to
detect and evaluate other chemical and bio-chemical substances. In [16] it is
suggested that nucleic acid structures, in addition to nucleic acid sequences, could
play an important role in molecular computation. Various shapes of folded nucleic
acids can be used to detect the presence of drugs, proteins, or other molecules. It is
also suggested that selected or engineered ribozymes could be used as operators to
effect re-write rules and to detect the presence of such non-nucleic acid molecules.
Using these structures and operators to sense levels of substances, it would then be
possible to compute an output readable using proposed biosensors that detect
fluorescence or polarization. These biosensors could potentially allow communication
between molecular sensory computers and conventional electronic computers.

11. PRESENT AND FUTURE SCENARIO

In 2000, Gardner and his colleagues James Collins and Charles Cantor, both also of
Boston University, built a memory device in E. coli out of two inverters for which the
output protein of one is the input protein of the other, and vice versa. In the same
year, Michael Elowitz and Stanislas Leibler of Rockefeller University in New York
City made an oscillator in which three inverters are connected in a loop so that the
output protein of each inverter is the input protein of the next inverter. In one test of
their system, a fluorescent protein became active whenever one of the proteins was in
its low state. The result was a population of gently twinkling cells like flashing
holiday lights, Elowitz says. "It was very beautiful," he says.
Weiss' team has just put the finishing touches on a five-gene circuit in E. coli that can
detect a particular chemical in its surroundings and turn on a fluorescent protein when
the chemical concentration falls within preselected bounds. Such circuits could
eventually be used to detect environmental toxins, Weiss notes. Ultimately, he says,
different cells could be programmed to respond to different concentrations of a toxic
chemical and to fluoresce in different colors, so that the cell population would
generate a color-coded topographical map of the toxin concentrations.
A. Bioware: All of the molecular computing methods mentioned above envision that
the computation will be done in vitro. Although the molecules are of biological origin,
they are extracted from the cell, and the reaction takes place in laboratory glassware.
But why not turn the living cell itself into a computer, powered by its own
metabolism? Several research collaborations have done work pointing toward this
possibility. The following are the ideas of a group at MIT, who have examined the
computational aspects of the problem in great detail. The MIT group consists of
Thomas F. Knight, Jr., Harold Abelson and Gerald Jay Sussman, and several of their

present and former students, including Don Allen, Daniel Coore, Chris Hanson,
George E. Homsy, Radhika Nagpal, Erik Rauch and Ron Weiss.The first major goal
of the MIT group is to develop design rules and a parts catalogue for biological
computers, like the comparable tools that facilitate design of electronic integrated
circuits. An engineer planning the layout of a silicon chip does not have to define the
geometry of each transistor individually; those details are specified in a library of
functional units, so that the designer can think in terms of higher-level abstractions
such as logic gates and registers. A similar design discipline will be needed before
biocomputing can become practical.
The elements of the MIT biocomputing design library will be repressor proteins. The
logic “family” might be named RRL, for repressor-repressor logic, in analogy with
the long-established TTL, which stands for transistor-transistor logic. The basic not
gate in RRL will be a gene encoding some repressor protein (call it Y), with
transcription of the Y gene regulated in turn by a different repressor (call it X). Thus
whenever X is present in the cell, it binds near the promoter site for Y and blocks the
progress of RNA polymerase. When X is absent, transcription of Y proceeds
normally. Because the Y protein is itself a repressor, it can serve as the input to some
other logic gate, controlling the production of yet another repressor protein, say Z. In
this way gates can be linked together in a chain or cascade.
Going beyond the not gate to other logical operations calls for just a little more
complexity. Inserting binding sites for two repressor proteins (A and B) upstream of a
gene for protein C creates a nand gate, which computes the logical function not and.
With the dual repressor sites in place, the C gene is transcribed only if both A and are
absent from the cell; if either one of them should rise above a threshold level,
production of C stops. It is a well-known result in mathematical logic that with
enough nand and not gates, you can generate any Boolean function you please. For
example, the function (A or B) is equivalent to (not (A nand B)), while (A and B) is
((not A) nand (not B)). The not gate itself can be viewed as just a degenerate nand
with only one input. Thus with no more resources than a bunch of nand gates, you can
build any logical network.

Figure 5 Design of a biochemical nand logic gate connected to a downstream inverter. The two-input
nand gate consists of two separate inverters, each with a different input, but both with the same output
protein. The nand gate output is always high unless both inputs are present. This output can then be
connected to other downstream gates, such as an inverter.

Pairs of nand gates can also be coupled together to form the computer memory
element known as a flip-flop, or latch. Implementing this concept in RRL calls for
two copies of the genes coding for two repressor proteins, M and N. One copy of the
M gene is controlled by a different repressor, R, and likewise one copy of the N gene
is regulated by repressor S. The tricky part comes in the control arrangements for the
second pair of genes: Here the repressor of M is protein N, and symmetrically the
repressor of N is M. In other words, each of these proteins inhibits the other’s
synthesis. Here’s how the flip-flop works. Suppose initially that both R and S are
present in the cell, shutting down both of the genes in the first pair; but protein M is
being made at high levels by the M gene in the second pair. Through the cross
coupling of the second pair, M suppresses the output of N, with the collateral result
that M’s own repressor site remains vacant, so that production of M can continue. But
now imagine that the S protein momentarily falls below threshold. This event briefly
lifts the repression of the N gene in the first pair. The resulting pulse of N protein
represses the M gene in the second pair, lowering the concentration of protein M,

which allows a little more N to be manufactured by the second N gene, which further
inhibits the second M gene, and so on. Thus a momentary change in S switches the
system from steady production of M to steady production of N. Likewise a brief blip
in R would switch it back again. (S and R stand for “set” and “reset.”)
One conclusion to be drawn from this synopsis of a few RRL devices is that a
computer based on genetic circuits will need a sizable repertory of different repressor
proteins. Each logic gate inside a cell must have a distinct repressor assigned to it, or
else the gates would interfere with one another. In this respect a biomolecular
computer is very different from an electronic one, where all signals are carried by the
same medium—an electric current. The reason for the difference is that electronic
signals are steered by the pattern of conductors on the surface of the chip, so that they
reach only their intended target. The biological computer is a wireless device, where
signals are broadcast throughout the cell. The need to find a separate repressor for
every signal complicates the designer’s task, but there is also a compensating benefit.
On electronic chips, communication pathways claim a major share of the real estate.
In a biochemical computer, communication comes for free.
Are there enough repressor proteins available to create useful computational
machinery? Note that interference between logic gates is not the only potential
problem; the repressor molecules taking part in the computation must also be distinct
from those involved in the normal metabolism of the cell. Otherwise, a physiological
upset could lead to a wrong answer; or, conversely, a computation might well poison
the cell in which it is running. A toxic instruction might actually be useful—any
multitasking computer must occasionally “kill” a process—but unintended events of
this kind would be a debugging nightmare. You can’t just reboot a dead bacterium.
Nature faces the same problem: A multitude of metabolic pathways have to be kept
under control without unwanted cross talk. As a result, cells have evolved thousands
of distinct regulatory proteins. Moreover, the Biocomputing engineer will be able to
mix and match among molecules and binding sites that may never occur together in
the natural world. The aim of the RRL design rules is to identify a set of genes and
proteins that can be encapsulated as black-box components, to be plugged in as
needed without any thought about conflicts.

12. Conclusion

This is becoming one of the most exciting fields. I’ll conclude this paper by just
sharing a vision for the future in which a single drop of water holds a veritable army
of living robots; in which people download software updates not for their computers,
but for their bacteria; and in which specially programmed cells course through a
person's arteries, monitoring blood sugar concentrations and keeping an eye out for
cholesterol buildups.
These scenarios still belong to the realm of science fiction—but implanting computer
programs into living creatures may not be far away. In the past few years, scientists
have taken the first steps towards creating a host of cellular robots that are
programmed to carry out tasks such as detecting and cleaning up environmental
pollutants, tracking down cancer cells in a body, and manufacturing antibiotics or
molecular-scale electronic components. These researchers have imported notions of
electrical engineering—digital logic, memory, and oscillators—into the realm of
biology.

	Some Informations About DNA
	Structure of DNA
	Arrangement of Nucleotieds in DNA

	Operations on DNA
	Aldeman’s Hamilton path problem
	The Adleman’s experiment
	Generate all possible routes
	Select itineraries that start and end with the correct cities
	Select itineraries that contain the correct number of cities
	Select itineraries that have a complete set of cities
	Reading out the answer
	Conclusions

	How DNA Computers Will Work
	COMPARISON OF DNA AND CONVENTIONALELECTRONIC COMPUTERS
	Similarities
	Differences

	Advantages of DNA Computers
	DRAWBACKS
	APPLICATIONS OF DNA COMPUTER
	PRESENT AND FUTURE SCENARIO
	Conclusion

