
DNA Computer 
 
DNA Computer can store billions of times more information then your PC hard drive 
and solve complex problems in a less time.We know that computer chip 
manufacturers are racing to make the next microprocessor that will more faster. 
Microprocessors made of silicon will eventually reach their limits of speed and 
miniaturization. Chips makers need a new material to produce faster computing 
speeds. 
To understand DNA computing lets first examine how the conventional computer 
process information. A conventional computer performs mathematical operations by 
using electrical impulses to manipulate zeroes and ones on silicon chips. A DNA 
computer is based on the fact the  information is “encoded” within deoxyribonucleic 
acid (DNA) as as patterns of molecules known as nucleotides. By manipulating the 
how the nucleotides combine with each other the DNA computer can be made to 
process data. The branch of computers dealing with DNA computers is called DNA 
Computing. 
The concept of DNA computing was born in 1993, when Professor Leonard Adleman, 
a mathematician specializing in computer science and cryptography accidentally 
stumbled upon the similarities between conventional computers and DNA while 
reading a book by James Watson. A little more than a year after this, In 1994, 
Leonard M. Adleman, a professor at the University of Southern California, created a 
storm of excitement in the computing world when he announced that he had solved a 
famous computation problem.  This computer solved the traveling salesman problem 
also known as the “Hamiltonian path" problem,which is explained later. DNA was 
shown to have massively parallel processing capabilities that might allow a DNA 
based computer to solve hard computational problems in a reasonable amount of time.  
There was nothing remarkable about the problem itself, which dealt with finding the 
shortest route through a series of points. Nor was there anything special about how 
long it took Adleman to solve it — seven days — substantially greater than the few 
minutes it would take an average person to find a solution. What was exciting about 
Adleman’s achievement was that he had solved the problem using nothing but 
deoxyribonucleic acid (DNA) and molecular chemistry. 
  
 
  
  
 
2. Some Informations About DNA 
  
“Deoxyribonucleic acid”. The molecules inside cells that carry genetic information 
and pass it from one generation to the next. See mitosis, chromosomes. 
We have heard the term DNA a million times.   You know that DNA is something 
inside cells .We know that each and every one looks different and this is because of 
they are having different  DNA. 
Have you ever wondered how the DNA in ONE egg cell and ONE sperm cell can 
produce a whole human being different from any other? How does DNA direct a cell's 
activities? Why do mutations in DNA cause such trouble (or have a positive effect)? 
How does a cell in your kidney "know" that it's a kidney cell as opposed to a brain 



cell or a skin cell or a cell in your eye? How can all the information needed to 
regulate the cell's activities be stuffed into a tiny nucleus? 
A basic tenet is that all organisms on this planet, however complex they may 
beperceived to be,are made of the same type of genetic blueprint.The mode by which 
that blue print is coded is the factor that decides our physical makeup-from color of 
our eyes to what ever we are human. 
To begin to find the answers to all these questions, you need to learn about the 
biological molecules called nucleic acids. 
An organism (be it bacteria, rosebush, ant or human) has some form of nucleic acid 
Which is the chemical carrier of its genetic information. There are two types of 
nucleic acids, deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) which code 
for all the information that determines the nature of the organism's cells. As a matter 
of fact, DNA codes for all the instructions needed for the cell to perform different 
functions. Did you know that human DNA contains enough information to produce 
about 100,000 proteins? 
Genes are made up of DNA ,which is shaped like a twisted ladder with rungs made up 
of molecules called nucleotide bases linked together in specific pairs.The arrangement 
of these bases along the DNA provides the cell with instructions on making proteins. 
DNA is tightly coiled into rod-shaped structures called chromosomes, which are 
stored in the nucleus of the cell. There are 22 pairs of chromosomes in each body cell 
plus two sex chromosomes. 
 
  
2.1) Structure of DNA 
 
This structure has two helical chains each coiled round the same axis (see diagram). 
We have made the usual chemical assumptions, namely, that each chain consists of 
phosphate diester groups joining ß-D-deoxyribofuranose residues with 3',5' linkages. 
The two chains (but not their bases) are related by a dyad perpendicular to the fibre 
axis. Both chains follow right- handed helices, but owing to the dyad the sequences of 
the atoms in the two chains run in opposite directions. 
There is a residue on each every 3.4 A. in the z-direction. We have assumed an angle 
of 36° between adjacent residues in the same chain, so that the structure repeats after 
10 residues on each chain, that is, after 34 A. The distance of a phosphorus atom from 
the fibre axis is 10 A. As the phosphates are on the outside, cations have easy access. 
The structure is an open one, and its water content is rather high. At lower water 
contents we would expect the bases to tilt so that the structure could become more 
compact. 
The novel feature of the structure is the manner in which the two chains are held 
together by the purine and pyrimidine bases. The planes of the bases are 
perpendicular to the fibre axis. The are joined together in pairs, a single base from the 
other chain, so that the two lie side by side with identical z-co-ordinates. One of the 
pair must be a purine and the other a pyrimidine for bonding to occur. 
The hydrogen bonds are made as follows :  purine position 1 to pyrimidine position 1 
; purine position 6 to pyrimidine position 6. 
If it is assumed that the bases only occur in the structure in the most plausible 
tautomeric forms (that is, with the keto rather than the enol configurations) it is found 
that only specific pairs of bases can bond together. These pairs are : adenine (purine) 
with thymine (pyrimidine), and guanine (purine) with cytosine (pyrimidine). 



In other words, if an adenine forms one member of a pair, on either chain, then on 
these assumptions the other member must be thymine ; similarly for guanine and 
cytosine. The sequence of bases on a single chain does not appear to be restricted in 
any way. However, if only specific pairs of bases can be formed, it follows that if the 
sequence of bases on one chain is given, then the sequence on the other chain is 
automatically determined. 
It has been found experimentally (3,4) that the ratio of the amounts of adenine to 
thymine, and the ration of guanine to cytosine, are always bery close to unity for 
deoxyribose nucleic acid. 
It is probably impossible to build this structure with a ribose sugar in place of the 
deoxyribose, as the extra oxygen atom would make too close a van der Waals contact. 
The previously published X-ray data (5,6) on deoxyribose nucleic acid are insufficient 
for a rigorous test of our structure. So far as we can tell, it is roughly compatible with 
the experimental data, but it must be regarded as unproved until it has been checked 
against more exact results. Some of these are given in the following communications. 
We were not aware of the details of the results presented there when we devised our 
structure, which rests mainly though not entirely on published experimental data and 
stereochemical arguments. 
It has not escaped our notice that the specific pairing we have postulated immediately 
suggests a possible copying mechanism for the genetic material. 
 
2.2) Arrangement  of  Nucleotieds  in DNA 
 
One strands 
 
Strands of DNA are long polymers of millions of linked nucleotides. These 
nucleotides consist of one of four nitrogen bases, a five carbon sugar and a phosphate 
group. The nucleotides that make up these polymers are named alter,the nitrogen 
bases that comprise it, namely, Adenine (A), Cytosine (C), Guanine (G), and Thymine 
(T). These nucleotides only combine in such a way that C always pairs with G, and T 
always pairs with A. These two strands of a DNA molecule are anti-parallel in that 
each strand runs in a opposite direction. Here below figure shows two strands of DNA 
and the bonding principles of the four types of nucleotides. 
The linkage of the sugar-phosphate "backbone" of a single DNA strand is      such that 
there is a directionality. That is, the phosphate on the 5' carbon of deoxyribose is 
linked to the 3' carbon of the next deoxyribose. This lends a directionality to a DNA 
strand which is said to have a 5' to 3' direction. The two strands of a DNA double 
helix are arranged in opposite directions and are said to be anti-parallel in that one 
strand is 5' - 3' and the complementary strand is 3' - 5'. 
  
Double Helix 
  
The particular order of the bases arranged along the suger-phosphate backbone is 
called the DNA sequnce and the combinations of the four nucleotides in the estimated 
millions long polymer strands results in a billions of combinations within a single 
DNA double helix. These massive amounts of combinations allow for the multitude 
of differences between every living thing on the plane-form the large scale (for 
example, mammals as opposed to plants)to the small scale (differences in human hair 
colour). Here the above fig. Shows the double helix shape of the DNA. 



 3.  Operations on DNA 
 
While a number of equivalent formalizations exist, we follow the descriptions. Note 
that the types of operations available are result of the capability of molecular biology 
rather than the wishes of algorithms designers. Also note that this algorithms are 
performed in constant time on testtubes which, for the sake of this discussion, may be 
of arbitrary size this operations are: 
 
1) MERGE 

 
This is the simple operations of combining the contents of two test tubes in a third 
tube. 
 
2) ANNEAL  

 
This is the process by which complementary strands of DNA are paired to form the 
famous double-helix structure of Watson and crick. Annealing is achieved by cooling 
a DNA solution, which encourages pairing. Adleman uses this in step 1 to generate all 
legal paths through the graph. 
 
3) MELT  
 
Melting is inverse operation of annealing. By heating the contents of a tube, double-
stranded DNA sequences are denatured, or separated into its two single-stranded 
parts. 
 
4) SEPERATION BY LENGTH 
  
The contents of test tube can be separated by increasing length. This is achieved by 
hel electrophoresis, whereby longer strands travel more slowly through the gel. This 
operation was used by Adleman in step 3 of his solution to HP. 
 
5) SEPERATION BY SEQUENCE 
 
This operation allows one to remove from solution all the DNA strands that contain a 
desired sequence. This is performed by generating the strands whose complement is 
the desired sequence. This newly generated strands is attached to magnetic substance 
which is used to extract the sequences after annealing. This operation crux of 
Adleman’s step 4. 
 
6) COPYING/AMPLIFICATION 
 
Copies are made of DNA  strands in a test tube. The strands to be copied must have 
known sequences at both the beginning and end in order for this operation to be 
performed. 
7) APPEND 
 



This process makes a DNA  strand longer by adding a character or strand to the end of 
each sequence. 
 
8) DETECT 
 
It is also possible to analyze test tube inorder to determine whether or not it contains 
atleast one strand of DNA. 
This operation, for example, is the last in Adleman’s algorithm where we attempt to 
find a DNA sequence that has survived the previous steps. 
  
  
4. Aldeman’s Hamilton path problem 
 The Hamiltonian Path problem 
  
In 1994, Leonard M. Adleman solved an unremarkable computational problem with a 
remarkable technique. It was a problem that a person could solve it in a few moments 
or an average desktop machine could solve in the blink of an eye. It took Adleman, 
however, seven days to find a solution. Why then was this work exceptional? Because 
he solved the problem with DNA. It was a landmark demonstration of computing on 
the molecular level. 
The type of problem that Adleman solved is a famous one. It's formally known as a 
directed Hamiltonian Path (HP) problem, but is more popularly recognized as a 
variant of the so-called "traveling salesman problem." In Adleman's version of the 
traveling salesman problem, or "TSP" for short, a hypothetical salesman tries to find a 
route through a set of cities so that he visits each city only once. As the number of 
cities increases, the problem becomes more difficult until its solution is beyond 
analytical analysis altogether, at which point it requires brute force search methods. 
TSPs with a large number of cities quickly become computationally expensive, 
making them impractical to solve on even the latest super-computer. Adleman’s 
demonstration only involves seven cities, making it in some sense a trivial problem 
that can easily be solved by inspection. Nevertheless, his work is significant for a 
number of reasons. 
It illustrates the possibilities of using DNA to solve a class of problems that is 
difficult or impossible to solve using traditional computing methods. 
It's an example of computation at a molecular level, potentially a size limit that may 
never be reached by the semiconductor industry. It demonstrates unique aspects of 
DNA as a data structure. It demonstrates that computing with DNA can work in a 
massively parallel fashion. 
  
 
5.  The Adleman’s experiment 
 
There is no better way to understand how something works than by going through an 
example step by step. So let’s solve our own directed Hamiltonian Path problem, 
using the DNA methods demonstrated by Adleman. The concepts are the same but the 
example has been simplified to make it easier to follow and present. 
Suppose that I live in Boston, and need to visit four cities: Atlanta, San Diego , 
St.Louis, and NY, with NY being my final destination. The airline I’m taking has a 



specific set of connecting flights that restrict which routes I can take (i.e. there is a 
flight from Boston. to San Diego, but no flight from St.Louis to San Diego). What 
should my itinerary be if I want to visit each city only once? 
Figure 1. A sample traveling salesman problem involving the shortest path connecting all cities. 
Arrows indicate the direction that someone can travel. For example, a voyager can leave Atlanta and 
arrive in St. Louis, and vice versa 

It should take you only a moment to see that there is only one route. Starting from 
Boston you need to fly to San Diego , Atlanta, St.Louis and then to N.Y. Any other 
choice of cities will force you to miss a destination, visit a city twice, or not make it to 
N.Y. For this example you obviously don’t need the help of a computer to find a 
solution. For six, seven, or even eight cities, the problem is still manageable. 
However, as the number of cities increases, the problem quickly gets out of hand. 
Assuming a random distribution of connecting routes, the number of itineraries you 
need to check increases exponentially. 
Pretty soon you will run out of pen and paper listing all the possible routes, and it 
becomes a problem for a computer.....or perhaps DNA. The method Adleman used to 
solve this problem is basically the shotgun approach mentioned previously. He first 
generated all the possible itineraries and then selected the correct itinerary. This is the 
advantage of DNA. It’s small and there are combinatorial techniques that can quickly 
generate many different data strings. Since the enzymes work on many DNA 
molecules at once, the selection process is massively parallel. 
Specifically, the method based on Adleman’s experiment would be as follows: 
  
1)  Generate all possible routes. 
2) Select itineraries that start with the proper city and end with the final city. 
3)  Select itineraries with the correct number of cities. 
4)  Select itineraries that contain each city only once. 
  
All of the above steps can be accomplished with standard molecular biology 
techniques. 
  
Part I: Generate all possible routes 
  
Strategy : Encode city names in short DNA sequences. Encode itineraries by 
connecting the city sequences for which routes exist. 
  
DNA can simply be treated as a string of data. For example, each city can be 
represented by a "word" of six bases: 
  
Boston                 GCTACG 
San Diego           CTAGTA 
Atlanta                 TCGTAC 
St.Louis               CTACGG 
New York           ATGCCG 
  
The entire itinerary can be encoded by simply stringing together these DNA 
sequences that represent specific cities. For example, the route from Boston -> San 
Diego -> Atlanta -> St.Louis -> New York would simply be 



GCTACGCTAGTATCGTACCTACGGATGCCG, or equivalently it could be 
represented in double stranded form with its complement sequence. 
So how do we generate this? Synthesizing short single stranded DNA is now a routine 
process, so encoding the city names is straightforward. The molecules can be made by 
a machine called a DNA synthesizer or even custom ordered from a third party. 
Itineraries can then be produced from the city encodings by linking them together in 
proper order. To accomplish this you can take advantage of the fact that DNA 
hybridizes with its complimentary sequence. 
For example, you can encode the routes between cities by encoding the compliment 
of the second half (last three letters) of the departure city and the first half (first three 
letters) of the arrival city. For example the route between St.Louis (CTACGG) and 
NY (ATGCCG) can be made by taking the second half of the coding for St.Louis 
(CGG) and the first half of the coding for NY (ATG). This gives CGGATG. By 
taking the complement of this you get, GCCTAC, which not only uniquely represents 
the route from St.Louis to NY, but will connect the DNA representing St.Louis and 
NY by hybridizing itself to the second half of the code representing St.Louis (...CGG) 
and the first half of the code representing NY (ATG...). For example: 
Random itineraries can be made by mixing city encodings with the route encodings. 
Finally, the DNA strands can be connected together by an enzyme called ligase. What 
we are left with are strands of DNA representing itineraries with a random number of 
cities and random set of routes. For example: 
  
We can be confident that we have all possible combinations including the correct one 
by using an excess of DNA encodings, say 10^13 copies of each city and each route 
between cities. Remember DNA is a highly compact data format, so numbers are on 
our side. 
  
  
Part II: Select itineraries that start and end with the correct cities 
  
  
Strategy: Selectively copy and amplify only the section of the DNA that starts with 
LA and ends with NY by using the Polymerase Chain Reaction. 
After Part I, we now have a test tube full of various lengths of DNA that encode 
possible routes between cities. What we want are routes that start with Boston and end 
with NY. To accomplish this we can use a technique called Polymerase Chain 
Reaction (PCR), which allows you to produce many copies of a specific sequence of 
DNA. PCR is an iterative process that cycles through a series of copying events using 
an enzyme called polymerase. Polymerase will copy a section of single stranded DNA 
starting at the position of a primer, a short piece of DNA complimentary to one end of 
a section of the DNA that you're interested in. 
By selecting primers that flank the section of DNA you want to amplify, the 
polymerase preferentially amplifies the DNA between these primers, doubling the 
amount of DNA containing this sequence. After many iterations of PCR, the DNA 
you're working on is amplified exponentially. So to selectively amplify the itineraries 
that start and stop with our cities of interest, we use primers that are complimentary to 
Boston and NY. What we end up with after PCR is a test tube full of double stranded 
DNA of various lengths, encoding itineraries that start with Boston and end with NY. 
  



Part III: Select itineraries that contain the correct number of cities 
  
Strategy: Sort the DNA by length and select the DNA whose length corresponds to 5 
cities. 
Our test tube is now filled with DNA encoded itineraries that start with Boston and 
end with NY, where the number of cities in between Boston and NY varies. We now 
want to select those itineraries that are five cities long. To accomplish this we can use 
a technique called Gel Electrophoresis, which is a common procedure used to resolve 
the size of DNA. The basic principle behind Gel Electrophoresis is to force DNA 
through a gel matrix by using an electric field. DNA is a negatively charged molecule 
under most conditions, so if placed in an electric field it will be attracted to the 
positive potential. 
However since the charge density of DNA is constant (charge per length) long pieces 
of DNA move as fast as short pieces when suspended in a fluid. This is why you use a 
gel matrix. The gel is made up of a polymer that forms a meshwork of linked strands. 
The DNA now is forced to thread its way through the tiny spaces between these 
strands, which slows down the DNA at different rates depending on its length. What 
we typically end up with after running a gel is a series of DNA bands, with each band 
corresponding to a certain length. We can then simply cut out the band of interest to 
isolate DNA of a specific length. Since we known that each city is encoded with 6 
base pairs of DNA, knowing the length of the itinerary gives number of cities. In this 
case we would isolate the DNA that was 30 base pairs long (5 cities times 6 base 
pairs). 
  
  
Part IV: Select itineraries that have a complete set of cities 
  
Strategy: Successively filter the DNA molecules by city, one city at a time. Since the 
DNA we start with contains five cities, we will be left with strands that encode each 
city once. 
DNA containing a specific sequence can be purified from a sample of mixed DNA by 
a technique called affinity purification. This is accomplished by attaching the 
compliment of the sequence in question to a substrate like a magnetic bead. The beads 
are then mixed with the DNA. DNA, which contains the sequence you're after then 
hybridizes with the complement sequence on the beads. These beads can then be 
retrieved and the DNA isolated. 
So we now affinity purify fives times, using a different city complement for each run. 
For example, for the first run we use Boston.'-beads (where the ' indicates compliment 
strand) to fish out DNA sequences which contain the encoding for Boston (which 
should be all the DNA because of step 3), the next run we use Atlanta '-beads, and 
then San Diego '-beads, St.Louis '-beads, and finally NY'-beads. 
The order isn’t important. If an itinerary is missing a city, then it will not be "fished 
out" during one of the runs and will be removed from the candidate pool. What we are 
left with are the are itineraries that start in Boston, visit each city once, and end in 
NY. This is exactly what we are looking for. If the answer exists we would retrieve it 
at this step. 
  
 
  



Reading out the answer 
  
One possible way to find the result would be to simply sequence the DNA strands. 
However, since we already have the sequence of the city encodings we can use an 
alternate method called graduated PCR. Here we do a series of PCR amplifications 
using the primer corresponding to Boston, with a different primer for each city in 
succession. By measuring the various lengths of DNA for each PCR product we can 
piece together the final sequence of cities in our itinerary. For example, we know that 
the DNA itinerary starts with Boston and is 30 base pairs long, so if the PCR product 
for the LA and Atlanta primers was 24 base pairs long, you know Atlanta is the fourth 
city in the itinerary (24 divided by 6). Finally, if we were careful in our DNA 
manipulations the only DNA left in our test tube should be DNA itinerary encoding 
Boston, San Diego, St.Louis, Atlanta, and NY. So if the succession of primers used is 
Boston & San Diego, Boston & St.Louis, Boston & Atlanta, and Boston & NY, then 
we would get PCR products with lengths 12, 18, 24, and 30 base pairs. 
 
Caveats 
  
Adleman's experiment solved a seven city problem, but there are two major 
shortcomings preventing a large scaling up of his computation. The complexity of the 
traveling salesman problem simply doesn’t disappear when applying a different 
method of solution - it still increases exponentially. For Adleman’s method, what 
scales exponentially is not the computing time, but rather the amount of DNA. 
Unfortunately this places some hard restrictions on the number of cities that can be 
solved; after the Adleman article was published, more than a few people have pointed 
out that using his method to solve a 200 city HP problem would take an amount of 
DNA that weighed more than the earth. Another factor that places limits on his 
method is the error rate for each operation. Since these operations are not 
deterministic but stochastically driven (we are doing chemistry here), each step 
contains statistical errors, limiting the number of iterations you can do successively 
before the probability of producing an error becomes greater than producing the 
correct result. For example an error rate of 1% is fine for 10 iterations, giving less 
than 10% error, but after 100 iterations this error grows to 63%. 
 
Conclusions  
 
So will DNA ever be used to solve a traveling salesman problem with a higher 
number of cities than can be done with traditional computers? Well, considering that 
the record is a whopping 13,509 cities, it certainly will not be done with the procedure 
described above. It took this group only three months, using three Digital 
AlphaServer 4100s (a total of 12 processors) and a cluster of 32 Pentium-II PCs. The 
solution was possible not because of brute force computing power, but because they 
used some very efficient branching rules. This first demonstration of DNA computing 
used a rather unsophisticated algorithm, but as the formalism of DNA computing 
becomes refined, new algorithms perhaps will one day allow DNA to overtake 
conventional computation and set a new record. 
On the side of the "hardware" (or should I say "wetware"), improvements in 
biotechnology are happening at a rate similar to the advances made in the 
semiconductor industry. For instance, look at sequencing; what once took a graduate 



student 5 years to do for a Ph.D thesis takes Celera just one day. With the amount of 
government funded research dollars flowing into genetic-related R&D and with the 
large potential payoffs from the lucrative pharmaceutical and medical-related 
markets, this isn't surprising. Just look at the number of advances in DNA-related 
technology that happened in the last five years. Today we have not one but several 
companies making "DNA chips," where DNA strands are attached to a silicon 
substrate in large arrays (for example Affymetrix's genechip). Production technology 
of MEMS is advancing rapidly, allowing for novel integrated small scale DNA 
processing devices. The Human Genome Project is producing rapid innovations in 
sequencing technology. The future of DNA manipulation is speed, automation, and 
miniaturization. 
And of course we are talking about DNA here, the genetic code of life itself. It 
certainly has been the molecule of this century and most likely the next one. 
Considering all the attention that DNA has garnered, it isn’t too hard to imagine that 
one day we might have the tools and talent to produce a small integrated desktop 
machine that uses DNA, or a DNA-like biopolymer, as a computing substrate along 
with set of designer enzymes. Perhaps it won’t be used to play Quake IV or surf the 
web -- things that traditional computers are good at -- but it certainly might be used in 
the study of logic, encryption, genetic programming and algorithms, automata, 
language systems, and lots of other interesting things that haven't even been invented 
yet. 
  
 
6.  How DNA Computers Will Work 
  
6.1)  A Fledgling Technology 
  
DNA computers can't be found at your local electronics store yet. The technology is 
still in development, and didn't even exist as a concept a decade ago. In 1994, 
Leonard Adleman introduced the idea of using DNA to solve complex mathematical 
problems. Adleman, a computer scientist at the University of Southern California, 
came to the conclusion that DNA had computational potential after reading the book 
"Molecular Biology of the Gene," written by James Watson, who co-discovered the 
structure of DNA in 1953. In fact, DNA is very similar to a computer hard drive in 
how it stores permanent information about your genes. 
Adleman is often called the inventor of DNA computers. His article in a 1994 issue of 
the journal Science outlined how to use DNA to solve a well-known mathematical 
problem, called the directed Hamilton Path problem, also known as the "traveling 
salesman" problem. The goal of the problem is to find the shortest route between a 
number of cities, going through each city only once. As you add more cities to the 
problem, the problem becomes more difficult. Adleman chose to find the shortest 
route between seven cities. 
You could probably draw this problem out on paper and come to a solution faster than 
Adleman did using his DNA test-tube computer. Here are the steps taken in the 
Adleman DNA computer experiment: 
  
Strands of DNA represent the seven cities. In genes, genetic coding is represented by 
the letters A, T, C and G. Some sequence of these four letters represented each city 
and possible flight path. 



 These molecules are then mixed in a test tube, with some of these DNA strands 
sticking together. A chain of these strands represents a possible answer. 
Within a few seconds, all of the possible combinations of DNA strands, which 
represent answers, are created in the test tube. 
Adleman eliminates the wrong molecules through chemical reactions, which leaves 
behind only the flight paths that connect all seven cities. 
The success of the Adleman DNA computer proves that DNA can be used to calculate 
complex mathematical problems. However, this early DNA computer is far from 
challenging silicon-based computers in terms of speed. The Adleman DNA computer 
created a group of possible answers very quickly, but it took days for Adleman to 
narrow down the possibilities. Another drawback of his DNA computer is that it 
requires human assistance. The goal of the DNA computing field is to create a device 
that can work independent of human involvement. 
  
Three years after Adleman's experiment, researchers at the University of Rochester 
developed logic gates made of DNA. Logic gates are a vital part of how your 
computer carries out functions that you command it to do. These gates convert binary 
code moving through the computer into a series of signals that the computer uses to 
perform operations. Currently, logic gates interpret input signals from silicon 
transistors, and convert those signals into an output signal that allows the computer to 
perform complex functions. 
The Rochester team's DNA logic gates are the first step toward creating a computer 
that has a structure similar to that of an electronic PC. Instead of using electrical 
signals to perform logical operations, these DNA logic gates rely on DNA code. They 
detect fragments of genetic material as input, splice together these fragments and form 
a single output. For instance, a genetic gate called the "And gate" links two DNA 
inputs by chemically binding them so they're locked in an end-to-end structure, 
similar to the way two Legos might be fastened by a third Lego between them. The 
researchers believe that these logic gates might be combined with DNA microchips to 
create a breakthrough in DNA computing. 
DNA computer components -- logic gates and biochips -- will take years to develop 
into a practical, workable DNA computer. If such a computer is ever built, scientists 
say that it will be more compact, accurate and efficient than conventional computers. 
In the next section, we'll look at how DNA computers could surpass their silicon-
based predecessors, and what tasks these computers would perform. 
  
 
7.  COMPARISON OF DNA AND CONVENTIONAL 
ELECTRONIC COMPUTERS 
 
As we have discussed the concepts and characteristics of DNA Computer, we can 
now compare the DNA Computers with Conventional Electronic Computers. 
 
7.1)  Similarities 
 
1) Transformation of Data 
Both DNA computers and electronic computers use Boolean logic (AND, OR, 
NAND, NOR) to transform data. The logical command "AND" is performed by 



separating DNA strands according to their sequences, and the command "OR" is done 
by pouring together DNA solutions containing specific sequences. For example, the 
logical statement "X or Y" is true if X is true or if Y is true. To simulate that, the 
scientists would pour the DNA strands corresponding to "X" together with those 
corresponding to "Y."[2][3]. Following is an example of how a Bio Chemical Inverter 
works. 
Bio-chemical Inverter: The characteristics of natural gene regulation systems can be 
exploited to design in vivo logic circuits (Weiss et al., 1999). 
How a biochemical inverter achieves the two states in digital inversion using genetic 
regulatory elements? Here, the concentration of a particular messenger RNA (mRNA) 
molecule represents a logic signal. In the first case, the input mRNA is absent and the 
cell transcribes the gene for the output mRNA using RNA polymerase (RNAp) 
molecules. In the second case, the input mRNA is present and the cell translates the 
input mRNA into the input protein using ribosomes. 
A digital inverter that consists of a gene encoding the instructions for protein B and 
containing a region (P) to which protein A binds. When A is absent (left)—a situation 
representing the input bit 0—the gene is active and B is formed—corresponding to an 
output bit 1. When A is produced (right)—making the input bit 1—it binds to P and 
blocks the action of the gene—preventing B from being formed and making the 
output bit 0. 
The input protein then binds specifically to the gene at the promoter site (labeled \P") 
and prevents the cell from synthesizing the output mRNA. 
Now more complete picture that explains the role of transcription and translation 
cellular processes in inversion is explained here. 
Biochemical inversion uses the transcription and translation cellular processes. 
Ribosomal RNA translates the input mRNA into an amino acid chain, which then 
folds into a three-dimensional protein structure. When the protein binds an operator of 
the gene's promoter, it prevents transcription of the gene by RNA polymerase 
(RNAp). In the absence of the repressor protein, RNAp transcribes the gene into the 
output mRNA. 
It depicts a functional model of the inverter derived from its biochemical reaction 
phases. The first phase in inversion is the translation stage, denoted as L. The input 
signal to this stage, and thus the inverter, corresponds to the concentration level of the 
input mRNA, φA. Ribosomal RNA (rRNA) translates the input mRNA into the input 
repressor protein, ψA , where L represents the steady state mapping between the 
mRNA and protein concentrations. The relationship between the input mRNA and 
repressor protein is initially linear, with increases in φA corresponding to increases in 
ψA, until an asymptotic boundary is reached. The properties of this boundary are 
determined by characteristics of the cell such as amino acid synthesis capabilities, the 
efficiency of the ribosome-binding site, and mRNA stability. Since cells degrade 
mRNA as well as protein molecules, constant synthesis of the input mRNA is needed 
to maintain a steady level of the input repressor protein. In the second phase, input 
protein monomers combine to form polymers that bind the operator, and subsequently 
repress the transcription of the output gene. 
The Functional composition of the inversion stages: the translation stage maps input 
mRNA levels (ψA) to input protein levels (φA), the cooperative binding stage maps 
input protein levels to bound operator levels (ρA), and the transcription stage maps 
bound operator levels to output mRNA levels (ψZ). The degradation of the mRNA 
and protein molecules is represented with the electrical ground symbol. The 
degradation of mRNA is part of the translation stage, while the degradation of 



proteins is part of the cooperative binding stage. The graphs illustrate the steady-state 
relationships for each of these stages and the overall inversion function that results 
from combining these stages. 
This cooperative binding, which ensures that only dimerized proteins can bind the 
DNA, decreases the digital noise. Let us define the concentration of operator that is 
bound to the repressor, or the strength of the repression, as ρA. In addition, denote the 
cooperative binding stage that occurs between ψA and ρA as C. In steady state, the 
relationship between ψA and ρA is sigmoidal. At low levels of ψA, the strength of 
repression does not increase significantly for increases in ρA because these 
concentrations are too low for appreciable dimerization. At higher concentrations of 
ψA, however, considerable dimerization occurs, resulting in a nonlinear increase in 
repression activity. For values of ψA approaching saturation, the operator is mostly 
bound, and repressor activity is close to maximal. At this point, increasing the 
concentration of ψA does not increase repression, and instead causes the ψA/ρA curve 
to move toward an asymptotic boundary. In this way, the cooperative binding stage 
performs signal restoration in which the analog output signal better represents the 
appropriate digital meaning than the corresponding analog input signal. Because each 
stage of the computation reduces the noise in the system through signal restoration, 
multiple inverters can be combined into more complex circuits, while still 
maintaining or even increasing the overall reliability of the system. 
In the final stage of the inverter, the transcription stage, RNA polymerase (RNAp) 
transcribes the regulated gene and the input signal is inverted. Let us define Z to be 
the output signal of the inverter and ψZ to be its corresponding mRNA concentration. 
The transcription stage, with input ρA and output φZ, has a steady state relationship in 
which increases in ρA correspond to monotonic decreases in φZ. During periods of 
minimal repression, transcription progresses at rapid rates resulting in maximal 
concentrations of φZ. However, for high levels of repression, the transcriptional 
activity declines and the level of φZ drops. 
Overall, the three stages combine to form a system that behaves as an inverter, 
negating the input mRNA signal, φA, to yield the output mRNA signal, φZ. 
Furthermore, with efficient signal restoration during the cooperative binding stage of 
inversion, complex but reliable digital logic circuits are attainable. 
  
2) Manipulation of Data 
Electronic computers and DNA computers both store information in strings, which 
are manipulated to do processes. Vast quantities of information can be stored in a test 
tube. The information could be encoded into DNA sequences and the DNA could be 
stored. To retrieve data, it would only be necessary to search for a small part of it - a 
key word, for example – by adding a DNA strand designed so that its sequence sticks 
to the key word wherever it appears on the DNA [3]. 
  
3) Computation Ability 
All computers manipulate data by addition and subtraction. A DNA computer should 
be able to solve a satisfiability problem with 70 variables and 1,000 AND-OR 
connections. To solve it, assign various DNA sequences to represent 0’s and 1’s at the 
various positions of a 70 digit binary number. Vast numbers of these sequences would 
be mixed together, generating longer molecules corresponding to every possible 70-
digit sequence [2][3]. 
  



 
  
  
  
7.2)  Differences 
  
1) Size 
Conventional computers are about 1 square foot for the desktop and another square 
foot for the monitor. One new proposal is for a memory bank containing more than a 
pound of DNA molecules suspended in about 1,000 quarts of fluid, in a bank about a 
yard square. Such a bank would be more capacious than all the memories of all the 
computers ever made. 
The first ever-electronic computer (Eniac) took up a large room whereas the first 
DNA computer (Adleman) was 100 micro liters. Adleman dubbed his DNA computer 
the 
TT-100, for test tube filled with 100 micro liters, or about one-fiftieth of a teaspoon of 
fluid, which is all it took for the reactions to occur. 
  
2) Representation of Data 
DNA computers use Base4 to represent data, whereas electronic computers use Base2 
in the form of 1’s and 0’s. The nitrogen bases of DNA are part of the basic building 
blocks of life. Using this four letter alphabet, DNA stores information that is 
manipulated by living organisms in almost exactly the same way computers work 
their way through strings of 1’s and 0’s. 
  
3) Parallelism 
Electronic computers typically handle operations in a sequential manner. Of course, 
there are multi-processor computers, and modern CPUs incorporate some parallel 
processing, but in general, in the basic Von Neumann architecture computer [4], 
instructions are handled sequentially. A von Neumann machine, which is what all 
modern CPUs are, basically repeats the same "fetch and execute cycle" over and over 
again; it fetches an instruction and the appropriate data from main memory, and it 
executes the instruction. It does this many, many times in a row, really, really fast. 
The great Richard Feynman [5], in his Lectures on Computation, summed up von 
Neumann computers by saying, "the inside of a computer is as dumb as hell, but it 
goes like mad!" DNA computers, however, are non-von Neuman, stochastic machines 
that approach computation in a different way from ordinary computers for the purpose 
of solving a different class of problems. Typically, increasing performance of silicon 
computing means faster clock cycles (and larger data paths), where the emphasis is on 
the speed of the CPU and not on the size of the memory. 
For example, will doubling the clock speed or doubling your RAM give you better 
performance? For DNA computing, though, the power comes from the memory 
capacity and parallel processing. If forced to behave sequentially, DNA loses its 
appeal. For example, let's look at the read and write rate of DNA. In bacteria, DNA 
can be replicated at a rate of about 500 base pairs a second. Biologically this is quite 
fast (10 times faster than human cells) and considering the low error rates, an 
impressive achievement. But this is only 1000 bits/sec, which is a snail's pace when 
compared to the data throughput of an average hard drive. But look what happens if 
you allow many copies of the replication enzymes to work on DNA in parallel. First 



of all, the replication enzymes can start on the second replicated strand of DNA even 
before they're finished copying the first one. So already the data rate jumps to 2000 
bits/sec. But look what happens after each replication is finished - the number of 
DNA strands increases exponentially (2n after n iterations). With each additional 
strand, the data rate increases by 1000 bits/sec. So after 10 iterations, the DNA is 
being replicated at a rate of about 1Mbit/sec; after 30 iterations it increases to 1000 
Gbits/sec. This is beyond the sustained data rates of the fastest hard drives. 
  
4) Material 
Obviously, the material used in DNA Computers is different than in Conventional 
Electronic Computers. Generally, people take a variety of enzymes such as restriction 
nuclease and ligase as the hardware of DNA Computers, encoded double-stranded or 
single-stranded DNA molecules as software and data are stored in the sequences of 
base pairs. As for conventional electronic computers, electronic devices compose 
hardware. Software and data are stored in the organized structure of electronic devices 
represented by the electrical signals. 
The other difference between DNA Computers and conventional electronic computers 
in material is the reusability. The materials used in DNA Computer are not reusable. 
Whereas an electronic computer can operate indefinitely with electricity as its only 
input, a DNA computer would require periodic refueling and cleaning. On the other 
side, until now, the molecular components used are still generally specialized. In the 
current research of DNA Computing, very different sets of oligonucleotides are used 
to solve different problems. 
  
5) Methods of Calculation: 
By synthesizing particular sequences of DNA, DNA computers carry out calculations. 
Conventional computers represent information physically expressed in terms of the 
flow of electrons through logical circuits. Builders of DNA computers represent 
information in terms of the chemical units of DNA. Calculating with an ordinary 
computer is done with a program that instructs electrons to travel on particular paths; 
with a DNA computer, calculation requires synthesizing particular sequences of DNA 
and letting them react in a test tube [3]. As it is, the basic manipulations used for 
DNA Computation include Anneal, Melt, Ligate, Polymerase Extension, Cut, 
Destroy, Merge, Separate by Length which can also be combined to high level 
manipulations such as Amplify, Separate by Subsequence, Append, Mark, Unmark. 
And the most famous example of a higher-level manipulation is the polymerase chain 
reaction (PCR). 
  
 
8.  Advantages of DNA Computers 
 
1) Parallelism 
“The speed of any computer, biological or not, is determined by two factors: (i) how 
many parallel processes it has; (ii) how many steps each one can perform per unit 
time. The exciting point about biology is that the first of these factors can be very 
large: recall that a small amount of water contains about 1022 molecules. Thus, 
biological computations could potentially have vastly more parallelism than 
conventional ones.”[6] 



In November of 1994, Leonard Adleman published a dramatic reminder that 
computation is independent of any particular substrate. By using strands of DNA 
annealing to each other, he was able to compute a solution to an instance of the 
Hamiltonian path problem (HPP) (Figure 4). While working in formal language 
theory and artificial selection of RNA had presaged the concept of using DNA to do 
computation, these precursors had largely gone unnoticed in mainstream computer 
science. Adleman’s work sparked intense excitement and marked the birth of a new 
field, DNA computation [7]. 
  
The Hamiltonian Path problem 
 
The goal is to find a path from the start city to the end city going through every city 
only once. 
The Hamiltonian Path problem is shown in Figure 3. To solve this problem Adleman 
used a non-deterministic algorithm (brute force method) to solve this problem. The 
main thinking of using DNA other than electronic computer to solve this problem is 
the parallelism of DNA operations. In fact, the real interesting thing on the DNA 
solution for the Hamiltonian path problems is that most input data grow just linearly 
with the growth of the number of edges. 
That means it is almost impossible to solve this kind of problems (NP or NP-
Compete) using a normal computer when the complexity of the problem grows 
because they must try each option one at a time. While, as for DNA based computers, 
just the quantity of DNA’s should grow exponentially but this is not a problem 
because the quantity of DNA’s for all known problems is small enough. (In 
reasonable concentrations, a liter of DNA solution can store up to 1022 bits of 
information [8]) They can try all of the options at the same time, determining possible 
solutions while weeding out wrong answers. 
Let’s now look a little bit more deeply into the biochemical operation. In the cell, 
DNA is modified biochemically by a variety of enzymes, which are tiny protein 
machines that read and process DNA according to nature's design. There is a wide 
variety and number of these "operational" proteins, which manipulate DNA on the 
molecular level. For example, there are enzymes that cut DNA and enzymes that paste 
it back together. Other enzymes function as copiers, and others as repair units. 
Molecular biology, Biochemistry, and Biotechnology have developed techniques that 
allow us to perform many of these cellular functions in the test tube. 
It's this cellular machinery, along with some synthetic chemistry, that makes up the 
palette of operations available for computation. Just like a CPU has a basic suite of 
operations like addition, bit-shifting, logical operators (AND, OR, NOT NOR), etc. 
that allow it to perform even the most complex calculations, DNA has cutting, 
copying, pasting, repairing, and many others. And note that in the test tube, enzymes 
do not function sequentially, working on one DNA molecules at a time. Rather, many 
copies of the enzyme can work on many DNA molecules simultaneously. So this is 
the power of DNA computing that it can work in a massively parallel fashion. 
 
2) Gigantic memory capacity 
Just as we have discussed, the other implicit characteristic of DNA Computer is its 
gigantic memory capacity. Storing information in molecules of DNA allows for an 
information density of approximately 1 bit per cubic nanometer. The bases (also 
known as nucleotides) of DNA molecules, which represent the minimize unit of 



information in DNA Computers, are spaced every 0.34 nanometers along the DNA 
molecule (Figure 4), giving DNA a remarkable data density of nearly 18 Megabits per 
inch. In two dimensions, if you assume one base per square nanometer, the data 
density is over one million Gigabits per square inch. Compare this to the data density 
of a typical high performance hard driver, which is about 7 gigabits per square inch -- 
a factor of over 100,000 smaller [8]. Researchers from Pacific Northwest National 
Laboratory are tapping forces of nature to store information more permanently. The 
researchers used artificial DNA sequences to encode portions of the text of the 
children's song it's a Small World, added the sequences to bacteria DNA, allowed the 
bacteria to multiply, and then extracted the message part of a DNA strand and 
retrieved the encoded information. Because DNA is passed down through generations 
of living organisms, information stored this way should survive for as long as the line 
of organisms survives, said Pak Wong, a chief scientist at the Pacific Northwest 
National Laboratory. 
Storing information is DNA's natural function, said Wong. "We [are] taking 
advantage of a time-tested, natural, nanoscale data storage technology perfected over 
the last 3 billion years." The encoding method could be used to store any digital 
information, he said. "Text, pictures, music -- anything you can send or receive over 
the Web could be saved in this form." 
 
3) Low Power Dissipation 
“The potential of DNA-based computation lies in the fact that DNA has a gigantic 
memory capacity and also in the fact that the biochemical operations dissipate so little 
energy,” says University of Rochester computer scientist Mitsunori Ogihara [10]. 
DNA computers can perform 2 x 1019 ligation operations per joule. This is amazing, 
considering that the second law of thermodynamics dictates a theoretical maximum of 
34 x 1019 (irreversible) operations per joule (at 300K). Existing supercomputers 
aren’t very energy-efficient, executing a maximum of 109 operations per joule [11]. 
Just think about the energy could be very valuable in future. So, this character of 
DNA computers can be very important. 
4) Suitable For Ambinatorial Problems:- 
From the first day that DNA Computation is developed, Scientists used it to solve 
combinatorial problems. In 1994, Leonard Adleman used DNA to solve one of 
Hamiltonian Path problem -Traveling Salesman problem. After that Lipton used DNA 
Computer to break Data Encryption Standard (DES) [12]. And then much of the work 
on DNA computing has continued to focus on solving NP-complete and other hard 
computational problems. In fact, experiments have proved that DNA Computers are 
suitable for solving complex combinatorial problems, even until now, it costs still 
several days to solve the problems like Hamiltonian Path problems. But the key point 
is that Adleman's original and subsequent works demonstrated the ability of DNA 
Computers to obtain tractable solutions to NP-complete and other hard computational 
problems, while these are unimaginable using conventional computers. 
 
5) Clean, Cheap And Available 
Besides above characteristics, clean, cheap and available are easily found from 
performance of DNA Computer. It is clean because people do not use any harmful 
material to produce it and also no pollution generates. It is cheap and available 
because you can easily find DNA from nature while it’s not necessary to exploit 



mines and that all the work you should do is to extract or refine the parts that you 
need from organism. 
DNA processors are cheaper and cleaner than today's silicon-based microprocessors. 
DNA resources are also more readily available than traditional microprocessor's. The 
field is highly multidisciplinary, attracting a host of extremely bright computer 
scientists, molecular biologists, geneticists, mathematicians, physicists, and others. 
Because of DNA computer's massive parallel processing powers (about 10E20 
computations a second), computations that would take years to be done on a 
conventioal computer could be computed in minutes. Certain operations in DNA 
computing are also over a billion times more energy efficient than conventional 
computers. DNA stores information at a density of about one bit per cubed nm—
about a trillion times as efficiently as videotape. In addition to its potential 
applications, such as DNA computation, nanofabrication, storage devices, sensing, 
and healthcare, biocomputation also has implications for basic scientific research. 
  
 
8.1)   Key benefits 
  
Today, the new Pentium 4 has a massive 42 million electronic switches. According to 
recent stastics, one cubic-centimeter of  DNA material can store a upto 10E21 bits of 
information, whereas the current computer have a maximum memory capacity of 
10E14. As estimated, a single DNA computer could contain more data compared to 
all the existing computer memories combined. Adleman’s experiment was carried out 
at 1.2x 10E18 operations per second. This is approximately 1,200,000 times faster 
than any existing super computing device. 
  
  
The following are the benefits of DNA computer: 
  
1) PREDICTABILITY  
  
After a year in lab, Adleman realized that strands of DNA behave much like 
mathematical equations. DNA’s chemical bases-adenine, thymine,cystosine, and 
guanine—hook up in a predictable manner:adenine always links with thymine and 
cytosine with guanine. Because of regularity of pattern Adleman hypothesized that he 
could use molecules to process data the same way PCs use microprocessors. 
  
2) DNA DIRECTIONS 
  
Over a period of time, Adleman performed a series of biochemical reactions to 
eliminate the wrong answers—strands encoding routes that either started or ended in 
the wrong city, those that visited a city more than once, and so on. When all the 
wrong answers had been destroyed, Adleman was able to look under the microscope 
and find only strands that carried the right answers. 
Adleman’s experiment used just seven cities, a problem that isn’t hard to solve on 
modern computers. But Adleman’s biological computations showed that DNA has the 
potential to solve more complex problem than even the most advance electronic 
computer can. The fastest supercomputer wouldn’t be able to solve a problem if more 



than about 50 cities, Adleman says. He believes that a testtube full of DNA would 
solve the problem with as many as 200 cities. 
First, DNA is incredibly enery-efficinet.Take ligase, a molecule whose job is to stick 
strands of DNA together. With just one joule of energy – the amount of energy a 
human expends to lift one kilogram one meter, ligase molecules can perform 20x10 
the 18th operations, Adleman says. Thats a million times 20 operations. Such 
efficiency push computing to new levels since electronics are limited by the amount 
of power—and the heat it gives off—needed to run increasingly sophisticated 
operations. 
  
3) INCREDIBLY CHEAP 
  
DNA is also a wonderful way to store information. One gram of genetic material, 
which would occupy about one cubic centimeter, can hold as much information as 1 
trillion CDs, according to Adleman. It’s also incredibly cheap: Commercial labs sell a 
molecule of SNA for about one-thousand trillionth of a cent. The cost is about $30. 
for a DNA sequence big enough to compute on. Intel sells its latest P4 chiop for more 
than $500. “DNA has been storing the blueprint of life for several billion years,” says 
Adleman. “its powers are untapped legacy for the 21st century. 
  
4) HALF-HOUR TEST 
  
The first practical applications are also emerging. Last January Olympus optical 
company and the university of TOKYO claim to have jointly develop a fast way 
identifying genes associated with diseases. Researchers developed a process that 
synthesizes 10,000 different DNA strands that are known to bond with genes related 
to specific diseases such as cancer. The strand are numbered and mixed with fluid 
containing genes  extracted from the patient. The fluid is than tested to determine 
which genes are functioning in the patient’s cells by reading the number of DNA 
strands that appear after a series of biochemical reactions. Researchers can complete a 
single test in about 3 hours, about one-half to one-third time taken by conventional 
biological methods. 
  
5) AMAZING TOOL TEST 
  
Thus, as the complexity of problems increases, the manual labour require for DNA 
computing would outweight the benefits of super fast computation. “Here we have the 
most amazing tool chest we have ever seen. We know it’s great because it was used to 
build you and me, “enthuses Adleman. “Right now, though, we are very clumsy with 
it.” 
DNA computers have the potential to take computing to new levels, picking up where 
Moore’s law leaves off. There are several advantages of using DNA instead of 
silicon: 
 
1) As long as there are cellular organisms, there will always be a supply of DNA. 
2) The large supply of DNA makes a cheap resource. 
3) Unlike the toxic materials use to make traditional microprocessors, DNA  biochips 
can be made cleanly. 
4) DNA computers are many times smaller than today’s computer. 



9.  DRAWBACKS 
 
1) Occasionally Slow 
The speed of each process in DNA Computing is still an open issue until now. In 
1994, Adleman’s experiment took still a long time to perform. The entire experiment 
took Adleman 7 days of lab work [13]. Adleman asserts that the time required for an 
entire computation should grow linearly with the size of the graph. This is true as long 
as the creation of each edge does not require a separate process. 
Practical experiments proved that when people using DNA to solve more complex 
problems such like SAT problems, more and more laborious separation and detection 
steps are required, which will only increase as the scale increases. But these problems 
may be overcomed by using autonomous methods for DNA computation, which 
execute multiple steps of computation without outside intervention. Actually, 
autonomous DNA computations were first experimentally demonstrated by Hagiya et 
al. [14] using techniques similar to the primer extension steps of PCR and by Reif, 
Seeman et al. [15] using the self-assembly of DNA nanostructures [16]. Recently, 
Shapiro et al. reported the use of restriction enzymes and ligase [2] on the Nature 
(Figure 5). They demonstrated a realization of a programmable finite automaton 
comprising DNA and DNA-manipulating enzymes that solves computational 
problems autonomously. In their implementation, 1012 automata sharing the same 
software run independently and in parallel on inputs (which could, in principle, be 
distinct) in 120 micro liters solution at room temperature at a combined rate of 109 
transitions per second with a transition fidelity greater than 99.8%. Thus, the 
laborious processes can be reduced largely. We can forecast that this problem can be 
settled very well in not long time. 
  
2) Hydrolysis 
The DNA molecules can fracture. Over the six months you're computing, your DNA 
system is gradually turning to water. DNA molecules can break – meaning a DNA 
molecule, which was part of your computer, is fracture by time. DNA can deteriorate. 
As time goes by, your DNA computer may start to dissolve. DNA can get damaged as 
it waits around in solutions and the manipulations of DNA are prone to error. Some 
interesting studies have been done on the reusability of genetic material in more 
experiments, a result is that it is not an easy task recovering DNA and utilizing it 
again. 
  
3) Information Untransmittable 
The model of the DNA computer is concerned as a highly parallel computer, with 
each DNA molecule acting as a separate process. In a standard multiprocessor 
connection-buses transmit information from one processor to the next. But the 
problem of transmitting information from one molecule to another in a DNA 
computer has not yet to be solved. Current DNA algorithms compute successfully 
without passing any information, but this limits their flexibility. 
  
4) Reliability Problems 
Errors in DNA Computers happen due to many factors. In 1995, Kaplan et al. [17] set 
out to replicate Adleman’s original experiment, and failed. Or to be more accurate, 
they state, “At this time, we have carried out every step of Adleman’s experiment, but 
we have not got an unambiguous final result.”  There are a variety of errors that can 



come along with experimentation. Typical errors are annealing errors, errors in PCR, 
errors during affinity separation (Purification). 
 
 
10. APPLICATIONS OF DNA COMPUTER 
 
  
10.1) Massively Parallel Processing 
  
The primary advantage offered by most proposed models of DNA based computation 
is the ability to handle millions of operations in parallel. The massively parallel 
processing capabilities of DNA computers may give them the potential to find 
tractable solutions to otherwise intractable problems, as well as potentially speeding 
up large, but otherwise solvable, polynomial time problems requiring relatively few 
operations. The use of DNA to perform massive searching and related algorithms will 
be referred to as "classic" DNA computation for the purposes of this discussion. 
Proposed "classical" models of DNA computers derive their potential advantage over 
conventional computers from their ability to: 
  
- Perform millions of operations simultaneously; 
- Generate a complete set of potential solutions; 
- Conduct large parallel searches; and 
- Efficiently handle massive amounts of working memory. 
  
These models also have some of the following drawbacks : 
  
- Each stage of parallel operations requires time measured in hours or days, with 
extensive human or mechanical intervention between steps; 
- Generating solution sets, even for some relatively simple problems, may require 
impractically large amounts of memory; and 
- Many empirical uncertainties, including those involving: actual error rates, the 
generation of optimal encoding techniques, and the ability to perform necessary bio-
operations conveniently in vitro or in vivo. 
  
With these qualities in mind, the comparison between conventional computing and 
"classic" DNA computation comes down to one of depth versus breadth. A working 
DNA based computer might hold an advantage over conventional computers when 
applied to decomposable problems, those problems that are able to be divided into 
separate, non-sequential tasks, because they can hold so much data in memory and 
conduct so many operations at once. However, due to the length of time required to 
conduct the biochemical operations, non-decomposable problems, those requiring 
many sequential operations, are likely to remain much more efficient on a 
conventional computer. [2] 
Within the paradigm of "classic" DNA computation there exists many different 
models, each with different advantages and degrees of applicability to classes of 
problems. An example of one model differing from Adleman's original search 
algorithm is the surface-based DNA algorithm used to solve the minimal set cover 
problem in [8]. This technique proposes to decrease the potential for error from lost 



DNA strands by affixing them to a surface of glass or silicon. The efficiency of their 
algorithm is dependent on the method of encoding quantity by strand length so the 
authors have speculated that such a model might be inappropriate for application to 
problems where the validity of a solution is not proportional to its size. A surface-
based approach to DNA computation was also considered in [13], which suggests the 
products of bit operations could be identified using optical readers scanning for the 
relative surface position of hybrid double strands consisting of a previously unknown 
bitstring and a value being held by that bit. The ability to read output in this manner 
may drastically increase the feasibility of implementing a DNA computer outside the 
conventional laboratory setting. It might also encourage the development of 
DNA/Electronic computer hybrids, with different problem types being handled by 
different components, and the electronic portion conveying the output to the user. 
Another model [10] makes use of 3-Dimensional DNA structures to reduce errors and 
necessary steps. This method of using the structral properties of DNA may also lead 
to more efficient storage mechanisms. 
Classical DNA computing techniques have already been theoretically applied to a real 
life problem: breaking the Data Encryption Standard (DES). Although this problem 
has already been solved using conventional techniques in a much shorter time than 
proposed by the DNA methods, the DNA models are much more flexible, potent, and 
sender of cost effective. 
DES is a method of encrypting 64-bit messages with a 56-bit key, used extensively in 
the United States. Electronic keys are normally a string of data used to code and/or 
decode sensitive messages. By finding the appropriate key to a set of encrypted 
messages, one can either read encoded messages or pose as the such messages. Using 
a special purpose electronic computer and differential cryptanalysis, it has been 
shown that the key to DES can be found in several days. However, to do so would 
require 2^43 examples of corresponding encrypted and unencrypted messages (known 
as plain-text/cipher-text pairs) and would slow down by a factor of 256 if the strength 
of the encrypting key was increased to 64-bits. In [6] it is proposed that DES could be 
broken using a DNA based computer and a search algorithm similar to Adleman's 
original technique. This procedure would be expected to take 4 months, but would 
only need a single plain-text/cipher-text pair or an example of cipher text with several 
plain text candidates to be successful. The feasibility of applying DNA computation 
to this problem was also addressed in [3] using a more refined algorithm (the sticker 
model approach) which enabled the researchers to suggest that they could solve the 
problem using less than a gram of DNA, an amount that could presumably be handled 
by a desk top sized machine. Both models would likely be more cost and energy 
effective than the expensive electronic processors required by conventional means, 
but are entirely theoretical. The first model ignores error rates incurred though 
laboratory techniques and the inherent properties of the DNA being used. The second 
model requires an error rate approaching .0001, with higher rates substantially 
affecting the volume of DNA required. Despite these assumptions, these models show 
that existing methods of DNA computation could be used to solve a real life problem 
in a way that is both practical and superior to methods used by conventional 
computers. In [3] it is also demonstrated that such benefits can be obtained despite 
error rates that would be unacceptable in an electronic computer and that may be 
unavoidable in a molecular one. 
  
  
 



10.2) Storage and Associative Memory 
  
DNA might also be used to mirror, and even improve upon, the associative 
capabilities of the human brain. In [4] Baum proposed a method for making a large 
content addressable memory using DNA. A truly content addressable memory occurs 
when a data entry can be directly retrieved from storage by entering an input that most 
closely resembles it over other entries in memory. This input may be very incomplete, 
with a number of wildcards, and in an associative memory might even contain bits 
that do not actually occur within the closest match. This contrasts with a conventional 
computer memory, where the specific address of a word must be known to retrieve it. 
Rather, the use of this technique would replicate what is thought by many to be a key 
factor in human intelligence. 
Baum's models for a DNA associative memory are quite simple, and build from the 
techniques used in other areas of DNA computation. Storing a word could be done by 
assigning a specific DNA subsequence to each component value pair and building a 
fixed length word from these subsequences. To then retrieve the word closest to the 
input, one would introduce marked complementary subsequences into the storage 
medium and chose the molecule that has the most matches to this input. This 
technique could be further refined to more closely approximate the brain by 
appending words to only store attributes that an object has, rather than wasting space 
using '0's to represent attributes that an object does not have. 
Baum has further speculated that a memory could be constructed where only portions 
of the data are content-addressable and associative, with other information on an 
object compactly stored in addresses relative to the associative portion of the entry. 
To save on operating costs and reduce error frequency, this portion of the memory 
could be kept in double-stranded form. 
Considering the brain's limit of about 10^15 synapses and Feynman's low-end 
estimate that the brain can distinguish about 10^6 concepts, such a DNA based 
associative memory could have certain advantages over the brain. Without accounting 
for redundant molecules, Baum estimates that a large bath tub of DNA, about 50g in 
1000L, could hold over 10^20 words. In attempting to come up with practical uses for 
this memory scheme one will have to weigh the massive size and ability to retrieve in 
an associative manner against the slow retrieval times necessitated by current 
biomolecular engineering techniques. And, although Baum's simplistic approach has 
accounted for some error rates, his initial paper remains quite speculative. 
  
10.3) DNA2DNA Applications 
  
Another area of DNA computation exists where conventional computers clearly have 
no current capacity to compete. This is the concept of DNA2DNA computations as 
suggested in [12] and identified as a potential killer app. DNA2DNA computations 
involve the use of DNA computers to perform operations on unknown pieces of DNA 
without having to sequence them first. This is achieved by re-coding and amplifying 
unknown strands into a redundant form so that they can be operated on according to 
techniques similar to those used in the sticker model of DNA computation. Many of 
the errors inherent in other models of DNA computing can hopefully be ignored in 
DNA2DNA computing because there will be such a high number of original strands 
available for operations. 



The potential applications of re-coding natural DNA into a computable form are many 
and include: 
 
- DNA sequencing; 
- DNA fingerprinting; 
- DNA mutation detection or population screening; and 
- Other fundamental operations on DNA. 
  
In the case of DNA mutation detection, the strand being operated on would already be 
partially known and therefore fewer steps would need to be taken to re-code the DNA 
into a redundant form applicable for computational form. 
There are other models of DNA computation that suggest that DNA might be used to 
detect and evaluate other chemical and bio-chemical substances. In [16] it is 
suggested that nucleic acid structures, in addition to nucleic acid sequences, could 
play an important role in molecular computation. Various shapes of folded nucleic 
acids can be used to detect the presence of drugs, proteins, or other molecules. It is 
also suggested that selected or engineered ribozymes could be used as operators to 
effect re-write rules and to detect the presence of such non-nucleic acid molecules. 
Using these structures and operators to sense levels of substances, it would then be 
possible to compute an output readable using proposed biosensors that detect 
fluorescence or polarization. These biosensors could potentially allow communication 
between molecular sensory computers and conventional electronic computers. 
  
11. PRESENT AND FUTURE SCENARIO 
 
In 2000, Gardner and his colleagues James Collins and Charles Cantor, both also of 
Boston University, built a memory device in E. coli out of two inverters for which the 
output protein of one is the input protein of the other, and vice versa. In the same 
year, Michael Elowitz and Stanislas Leibler of Rockefeller University in New York 
City made an oscillator in which three inverters are connected in a loop so that the 
output protein of each inverter is the input protein of the next inverter. In one test of 
their system, a fluorescent protein became active whenever one of the proteins was in 
its low state. The result was a population of gently twinkling cells like flashing 
holiday lights, Elowitz says. "It was very beautiful," he says. 
Weiss' team has just put the finishing touches on a five-gene circuit in E. coli that can 
detect a particular chemical in its surroundings and turn on a fluorescent protein when 
the chemical concentration falls within preselected bounds. Such circuits could 
eventually be used to detect environmental toxins, Weiss notes. Ultimately, he says, 
different cells could be programmed to respond to different concentrations of a toxic 
chemical and to fluoresce in different colors, so that the cell population would 
generate a color-coded topographical map of the toxin concentrations. 
A. Bioware: All of the molecular computing methods mentioned above envision that 
the computation will be done in vitro. Although the molecules are of biological origin, 
they are extracted from the cell, and the reaction takes place in laboratory glassware. 
But why not turn the living cell itself into a computer, powered by its own 
metabolism? Several research collaborations have done work pointing toward this 
possibility. The following are the ideas of a group at MIT, who have examined the 
computational aspects of the problem in great detail. The MIT group consists of 
Thomas F. Knight, Jr., Harold Abelson and Gerald Jay Sussman, and several of their 



present and former students, including Don Allen, Daniel Coore, Chris Hanson, 
George E. Homsy, Radhika Nagpal, Erik Rauch and Ron Weiss.The first major goal 
of the MIT group is to develop design rules and a parts catalogue  for biological 
computers, like the comparable tools that facilitate design of electronic integrated 
circuits. An engineer planning the layout of a silicon chip does not have to define the 
geometry of each transistor individually; those details are specified in a library of 
functional units, so that the designer can think in terms of higher-level abstractions 
such as logic gates and registers. A similar design discipline will be needed before 
biocomputing can become practical. 
The elements of the MIT biocomputing design library will be repressor proteins. The 
logic “family” might be named RRL, for repressor-repressor logic, in analogy with 
the long-established TTL, which stands for transistor-transistor logic. The basic not 
gate in RRL will be a gene encoding some repressor protein (call it Y), with 
transcription of the Y gene regulated in turn by a different repressor (call it X). Thus 
whenever X is present in the cell, it binds near the promoter site for Y and blocks the 
progress of RNA polymerase. When X is absent, transcription of Y proceeds 
normally. Because the Y protein is itself a repressor, it can serve as the input to some 
other logic gate, controlling the production of yet another repressor protein, say Z. In 
this way gates can be linked together in a chain or cascade. 
Going beyond the not gate to other logical operations calls for just a little more 
complexity. Inserting binding sites for two repressor proteins (A and B) upstream of a 
gene for protein C creates a nand gate, which computes the logical function not and. 
With the dual repressor sites in place, the C gene is transcribed only if both A and are 
absent from the cell; if either one of them should rise above a threshold level, 
production of C stops. It is a well-known result in mathematical logic that with 
enough nand and not gates, you can generate any Boolean function you please. For 
example, the function (A or B) is equivalent to (not (A nand B)), while (A and B) is 
((not A) nand (not B)). The not gate itself can be viewed as just a degenerate nand 
with only one input. Thus with no more resources than a bunch of nand gates, you can 
build any logical network. 

Figure 5 Design of a biochemical nand logic gate connected to a downstream inverter. The two-input 
nand gate consists of two separate inverters, each with a different input, but both with the same output 
protein. The nand gate output is always high unless both inputs are present. This output can then be 
connected to other downstream gates, such as an inverter. 

Pairs of nand gates can also be coupled together to form the computer memory 
element known as a flip-flop, or latch. Implementing this concept in RRL calls for 
two copies of the genes coding for two repressor proteins, M and N. One copy of the 
M gene is controlled by a different repressor, R, and likewise one copy of the N gene 
is regulated by repressor S. The tricky part comes in the control arrangements for the 
second pair of genes: Here the repressor of M is protein N, and symmetrically the 
repressor of N is M. In other words, each of these proteins inhibits the other’s 
synthesis. Here’s how the flip-flop works. Suppose initially that both R and S are 
present in the cell, shutting down both of the genes in the first pair; but protein M is 
being made at high levels by the M gene in the second pair. Through the cross 
coupling of the second pair, M suppresses the output of N, with the collateral result 
that M’s own repressor site remains vacant, so that production of M can continue. But 
now imagine that the S protein momentarily falls below threshold. This event briefly 
lifts the repression of the N gene in the first pair. The resulting pulse of N protein 
represses the M gene in the second pair, lowering the concentration of protein M, 



which allows a little more N to be manufactured by the second N gene, which further 
inhibits the second M gene, and so on. Thus a momentary change in S switches the 
system from steady production of M to steady production of N. Likewise a brief blip 
in R would switch it back again. (S and R stand for “set” and “reset.”) 
One conclusion to be drawn from this synopsis of a few RRL devices is that a 
computer based on genetic circuits will need a sizable repertory of different repressor 
proteins. Each logic gate inside a cell must have a distinct repressor assigned to it, or 
else the gates would interfere with one another. In this respect a biomolecular 
computer is very different from an electronic one, where all signals are carried by the 
same medium—an electric current. The reason for the difference is that electronic 
signals are steered by the pattern of conductors on the surface of the chip, so that they 
reach only their intended target. The biological computer is a wireless device, where 
signals are broadcast throughout the cell. The need to find a separate repressor for 
every signal complicates the designer’s task, but there is also a compensating benefit. 
On electronic chips, communication pathways claim a major share of the real estate. 
In a biochemical computer, communication comes for free. 
Are there enough repressor proteins available to create useful computational 
machinery? Note that interference between logic gates is not the only potential 
problem; the repressor molecules taking part in the computation must also be distinct 
from those involved in the normal metabolism of the cell. Otherwise, a physiological 
upset could lead to a wrong answer; or, conversely, a computation might well poison 
the cell in which it is running. A toxic instruction might actually be useful—any 
multitasking computer must occasionally “kill” a process—but unintended events of 
this kind would be a debugging nightmare. You can’t just reboot a dead bacterium. 
Nature faces the same problem: A multitude of metabolic pathways have to be kept 
under control without unwanted cross talk. As a result, cells have evolved thousands 
of distinct regulatory proteins. Moreover, the Biocomputing engineer will be able to 
mix and match among molecules and binding sites that may never occur together in 
the natural world. The aim of the RRL design rules is to identify a set of genes and 
proteins that can be encapsulated as black-box components, to be plugged in as 
needed without any thought about conflicts. 
  
12.   Conclusion 
  
This is becoming one of the most exciting fields. I’ll conclude this paper by just 
sharing a vision for the future in which a single drop of water holds a veritable army 
of living robots; in which people download software updates not for their computers, 
but for their bacteria; and in which specially programmed cells course through a 
person's arteries, monitoring blood sugar concentrations and keeping an eye out for 
cholesterol buildups. 
These scenarios still belong to the realm of science fiction—but implanting computer 
programs into living creatures may not be far away. In the past few years, scientists 
have taken the first steps towards creating a host of cellular robots that are 
programmed to carry out tasks such as detecting and cleaning up environmental 
pollutants, tracking down cancer cells in a body, and manufacturing antibiotics or 
molecular-scale electronic components. These researchers have imported notions of 
electrical engineering—digital logic, memory, and oscillators—into the realm of 
biology.  
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