
Discrete Structures

(Algorithmic Approach)

Alexander Gamkrelidze

Contents

1 Simpe Algorithms to Begin With 4
1.1 The Wolf, the Goat and the Cabbage . 4
1.2 Summary . 7

2 Recursion and Iteration 8
2.1 The Boats problem . 8
2.2 Towers of Hanoi . 11
2.3 Ancient Greek Problems: Ruler-and-Compass Constructions . 15
2.4 Summary . 22

3 Mathematical Induction and its Applications 23
3.1 Mathematical Induction . 23
3.2 Applications: Correctness and Complexity . 24
3.3 The Fibonacci Sequence . 26
3.4 Pascal’s Triangle . 32
3.5 Summary . 33

4 Sets and their Cardinality 34
4.1 Bijection and Countable Sets . 34
4.2 Diagonalization: Not all infinite sets are equal! . 36
4.3 Summary . 38

5 Encoding the Data: Alphabets and Languages 39
5.1 Encoding the Data . 39
5.2 Simulating Infinity with Finite Structures: Modular Arithmetics . 42
5.3 Elements of the Binary Arithmetics . 43

6 Relations and Sorting 45
6.1 Relations . 45
6.2 Applications of sorting and equivalences:

Searching in sets and residue classes . 49
6.3 Summary . 50

1

Introduction

In our everyday life, people do not need to understand what an algorithm is. But still, algorithms are omnipresent
and play a much more important role as one can think. Literrally, they follow us at every step: The process of
walking is also an algorithm such as ”Lean forward a little, put the left foot forward, lean yourself forward a little,
put the right foot forward, and repeat this process as many times as desired”. This process of walking sounds to
be very easy but in fact this is one of the most important unsolved problems in robotics.

Another example is a Khinkali recipe:

Input data:

Meat (mutton, can be mixed with beef), onions, red basil, savory, red pepperoni, black pepper, salt, flour, water

Output: Khinkali, Pshavian style

Procedure of the algorithm:

Algorithm Pshavian Khinkali

1. Make a stock: wash the bones, cover with water and boil until the taste is not watery;

Sieve to clean from bone rests and put aside.

2. Cut the meat and all greens and vegetables in small peaces;

3. Mix salt into the warm stock (should taste like sea water) and cover the meat with it. mix well and repeat
the procedure until the water is no longer absorbed;

4. Mix in the cut onions, red pepperoni and the greens, add some salt and black pepper to taste;

5. Take exactly the same amount of the stock used for the meat and make a hard dough: mix well with flour,
roll out, roll into a compact cylinder, flatten, roll out, roll into a compact cylinder and repeat this procedures
several time (ca. 10 min.). Cover and put into the refrigerator for ca. 20 min;

6. Repeat the above (last) step to get a hard but elastic dough (about 4 times);

7. Fill the rest of the stock with water into a large bowl and bring to a boil;

8. Cut a long peace from the dough, roll like a thick rope and cut into small peaces. Flatten the small peaces to
thin, round discs;

9. Put 1Tbsp soft meat mixture on each disc, bind together khinkali-style, put into the boiling water and mix
carefully to prevent from sticking;

10. Boil until khinkalis are inflated and swim on the surface for several minutes (ca. 10 - 12 min. in total);

11. Take out with a skimming ladle and — bon appetit!

end of the algorithm

Of course, the above recipe can not be considered as an algorithm in its exact definition, because it has many
unclear moments, such as the lack of the stopping criterions while making the dough or adding salt and pepper
”to taste” and so on. It needs some improvisation and the intervention of human creativity and feeling that is
illegitimate in automatisation.

2

CONTENTS 3

But it has some important similarities to that we call ”an algorithm”: it contains the exact steps one has to follow
to make khinkali.

In general, an algorithm can be considered as a list of steps needed to solve a problem with given initial values (its
input) without any intervention from outside.
Also, the following three points should be considered:

1. An algorithm should contain one or several steps;

2. When finishing one step, the next step (that follows immediately after it) should be executed;

3. The steps can be repeated several times (iterative execution).

Remark: To solve a problem, the total number of steps must be finite – an algorithm must terminate at some
time, but as we will see later, there are some algorithms that never terminate, thus not giving an answer at all. Of
course, such algorithms are useless, but for many problems, no algorithm can exist that finish their computation in
finite time (such problems are called unsolvable, but this is a topic of our further courses).

In algorithm design, two aspects are crucial:

1. Correctness — does it do the required job? Does it give the right output to each input?

2. Computational time — how fast is the algorithm? What is the maximal number of steps needed to get the
answer for any input?

Obviously, nobody needs an algorithm that does not do its job, or contains some (or many) mistakes.
Also, there is no use of an algorithm that gives the answer in several years or even centuries and millennia. The
computation should be guaranteed in reasonable time, the faster the better.
There are many problems around us: from making khinkali to sending rockets into the space. A natural question
is wether we can write an algorithm for any problem? Unfortunately, the answer is No. There are algorithms that
can not be solved automatically by an algorithm (at least from our actual scientific viewpoint).
More shocking news is that there are ”much more” unsolvable problems than solvable! That means that there are
more problems that can not be tackled by artificial intelligence — a sort of feeling and human intuition is needed
to master them.

And what about the solvable problems? Can we get an answer for them efficiently?
The prospects here are not satisfiable as well: There are many very important problems that can not be solved in
reasonable time using modern knowledge (not meaning that such solutions can not be discovered in future).

The moral from these stories is that, getting a new problem, one has to determine if it is solvable and in case it is,
wether it can be solved in reasonable time (there are some well known cases that many bright heads spent years in
searching a solution to a problem that turned out to be unsolvable).
But how can we know wether a problem is solvable or intractable? Unfortunately, we do not have one method to
determine such things. But we have some theoretical insight into the design and analysis of algorithms that helps
us to understand such questions. And this course is the beginning of that theory. It intends to help students to
start to understand the basics of problem solving by algorithms and their analysis.
Another question is how to tackle very important problems that turns out to be difficult or even unsolvable? People
have developed methods to write approximating algorithms (the answer will be almost correct), or probabilistic
approaches (the answer will be most of the time correct) or restriction of data etc. But this is the topic of our
further courses.

Chapter 1

Simpe Algorithms to Begin With

1.1 The Wolf, the Goat and the Cabbage

As Kernighan and Ritchie wrote in their seminal book ”The C Programming Language”, the best way to learn
a programming is to write programs. The same can be said about algorithms, so let us start with some simple
problems to see the most important points in algorithm design.
As a simplest example consider a well-known kids riddle (WGC for short):

A man wants to transport a wolf, a goat and a cabbage from one bank of a river to another by a boat (fig. 1.1).

Figure 1.1: Initial an final states of the WGC problem

As long as the man is on the same side of the river with the animals, they behave well and do not hurt each other.
But if the wolf and the goat are left unattended (the man is on the other side of the river), the wolf eats the goat.
Similarly, if the goat and the cabbage are left unattended, the goat eats the cabbage. If the wolf and the cabbage
are left unattended, no incident will happen.

Figure 1.2: Forbidden states

What is the algorithm to transport the animals and the plant from one bank of the river to another?
First of all, let us state the problem (input, output, and restrictions).

Thing to rememter: A WELL-STATED PROBLEM IS WORTH HALF THE SOLUTION.

4

CHAPTER 1. SIMPE ALGORITHMS TO BEGIN WITH 5

Given: A river and a man, a boat, a wolf, a goat and a cabbage, all on its one bank (fig. 1.1 left).
Output: All of them on the other bank of the river (fig. 1.1 right).
Restrictions: Only the man and one animal (or plant) fit in the boat (first restriction);
Wof and goat or/and goat and cabbage can not be left unattended (second restriction).

Figure 1.3: Steps of the algorithm

To solve this problem, we can use the algorithm (steps to be executed to solve the problem) in fig. 1.3.

Algorithm 1.1: Wolf, Goat and Cabbage
Given: a river and a man, a boat, a wolf, a goat, and a cabbage on one bank;

1: Promote the goat to the right bank;
2: Go back to the left bank;
3: Promote the wolf to the right bank;
4: Bring the goat to the left bank;
5: Promote the cabbage to the right bank;
6: Go back to the left bank;
7: Promote the goat to the right bank.

End of the algorithm

First of all, we should prove the correctness of the algorithm: Show that executing the steps one after the other
with given input yelds the desired result without violating any restriction point.

Exercise 1.1: Prove the correctness of this algorithm (hint: show what happens after each step).

To estimate the quality (the speed) of the algorithm, we should count its steps. To do so, one should first define
what a ”step” means. In general, this is a conventional question (depends on what the authors mean under this
term), but as we will see, in the theory of algorithms, there are some generally accepted simple actions considered
as steps. In our case let us assume that one crossing of the river with the boat is one step. Note that this definition
is independent from the time one needs to cross: we are interested in general questions such as how many steps are
needed, that are independent from who is executing the task and how fast can he execute each step.
In algorithm analysis, the method should be analysed, independent from the tool (computer) one uses to execute
the algorithm.

Exercise 1.2: Count the number of steps in the above algorithm.

Usually, in everyday-life problems, most information is redundant. For example, we do not care how large the
river is, how scary the wolf is, what is the color of the boat etc. We are interested only in the information that is
necessary to solve the problem.
We can describe the left bank as a set A, and the right bank as the set B. Further, assign a lathin letter to each
animal: Human 7→ H, Wolf 7→ W, Goat 7→ G and Cabbage 7→ C (fig. 1.4).

CHAPTER 1. SIMPE ALGORITHMS TO BEGIN WITH 6

BA
A B

H W G C

Figure 1.4: Formalisation of the above pictures

Then the input and the output will be A = {W,G,C,H}, B = ∅ and, respectively, A = ∅, B = {W,G,C,H} (fig. ??).

More formally, we have:

Input: Two sets A = {W,G,C,H} and B = ∅.

Output: A = ∅ and B = {W,G,C,H}.

Restrictions: In each step, the letter H should be put from one set to the other together with exactly one or no
other letter. The set that does not contain the letter H should not contain the letters G,C and/or W,G.

The statment will be slightly simplified by using numbers instead of letters. For example, Human 7→ 11, Wolf 7→ 1,
Goat 7→ 2, Cabbage 7→ 3. In this case, the term ”wolf and goat are alone on the same bank” or ”goat and cabbage
are on the same bank” means that the sum in one of the sets is odd. And the term ”the human is on the bank”
means that the sum of the elements of the appropriate set is greater than or equal to 10.

Exercise 1.3: What does it mean that the sum of numbers in one set is 6 ?

Exercise 1.4: State the WGC problem in terms of numbers.

Exercise 1.5: Write an algorithm for the problem stated in the previous exercise. Write the configurations of the
sets after each step.

Exercise 1.6: Prove the correctness of the algorithm from the above exercise (Hint: show that no restriction is
violated after each step and the input and output are as requested).

Exercise 1.7: Consider the following algorithm:

Algorithm 1.2: WGC (fast version)
Input: A river and a human, wolf, goat and a cabbage on one bank;

1: Promote the goat to the right bank;
2: Return to the left bank;
3: Promote the wolf to the right bank;
4: Return to the left bank;
5: Promote the cabbage to the right bank.

End of the algorithm

Is this a correct algorithm? Explain your answer.

Remark: In the above problem, the order of the input does not affect the result. Such problems are called completely
symmetric (or sometimes partially symmetric if only some input elements can be exchanged).
Often, the problems are not symmetric at all, as shown in the following simple example:

CHAPTER 1. SIMPE ALGORITHMS TO BEGIN WITH 7

Given two natural numbers a and b, calculate a
b .

Exercise 1.8: Consider the problem of sorting n whole numbers in ascending order. What is its input and output?
Is it completely symmetric? Partially symmetric? Non-symmetric?

Exercise 1.9: Give an example of a partially symmetric problem.

Exercise 1.10: Write an algorithm for the following problem: For the given a sequence of 10 whole numbers, calculate
the sum of its odd elements. What can be the maximal (minimal) number of steps for this algorithm? Assume that
checking the number for being odd and addition are one steps. Is this problem completely symmetric? Partially
symmetric? Non-symmetric? What is its input and output? Are there any restrictions?

Last but not least, a small puzzle to solve:

Two men meet on the street. They haven’t seen each other for many years. They talk about various things, and
then after some time one of them says: ”Since you’re a mathematician, I’d like to give you a problem to solve.
You know, today’s a very special day for me: All three of my sons celebrate their birthday this very day! So, can
you tell me how old each of them is?” ”Sure,” answers the mathematician, ”but you’ll have to tell me something
about them”. ”OK, I’ll give you some hints”, replies the father of the three sons, ”The product of the ages of my
sons is 36”. ”That’s fine,” says the mathematician, ”but I’ll need more than just this”. ”The sum o f their ages
is equal to the number o f windows i n that building”, says the father pointing at a structure next to them. The
mathematician thinks for some time and replies, ”Still, I need an additional hint to solve your puzzle”. ”My oldest
son has blue eyes”, says the other man. ”Oh, this is sufficient!” exclaims the mathematician, and he gives the father
the correct answer.

What are the ages of his three sons?

1.2 Summary

Considering some simple examples, we showed how to construct algorithms – a list of actions necessary to solve a
given problem.
To state a problem, one needs to clearly define its input and output as well as the restrictions that should be
regarded during the execution of the algorithm.
After writing an algorithm, one shold proof its correctness (show somehow that after the execution of the algorithm
with given input the appropriate output will be obtained without violating any restriction).
Last but not least – to estimate the goodness of an algorithm – one has to count (or estimate) the (maximal and/or
minimal) number of steps needed to complete the algorithm with any input. Tis process is called the estimation of
the time complexity of the algorithm. In the above examples, the estimation process was quite simple. As we will
se later, it can become much more complex and will need some techniques to be done.

Chapter 2

Recursion and Iteration

2.1 The Boats problem

Let’s consider the well-known boats problem:

Input: A narrow river with a small bay; A long black boat on the left side of the bay and a small white boat on
the right side of it.

Output: The white boat on the left side and the black one on the right side of the bay (the boats should pass one
another).

Restrictions: The river is narrow enough to pass only one (black or white) boat; The black boat can not enter the
bay but the white one can.

Fig. 2.1 shows the input and output configurations as well as the restrictions.

Figure 2.1: Input, output and restrictions

In order to pass the boats, the the following algorithm should be completed:

Algorithm 2.1: ”Bypassing one boat”
Input: A narrow river with a bay; A long black boat on the left side and a small white boat on the right
side of the bay

1: The white boat enters the bay;
2: The black boat passes by;
3: The white boat exits the bay.

End of the Algorithm

It is easy to show that this algorithm gives us the desired result and its steps do not violate the restrictions (fig.
2.2).
The above algorithm can be denoted as A1 (bypassing 1 boat). Its steps are schematically shown in fig. 2.2.
Obviously, if we apply the A1 algorithm on the initial input configuration, the correct configuration will be obtained.
Now consider the initial condition with two white boats on the rigt side of the bay shown in fig. 2.3 (left) and the
desired output (same figure right). Let us call it ”bypassing two boats”.

8

CHAPTER 2. RECURSION AND ITERATION 9

Figure 2.2: The One-Boat Algorithm

Figure 2.3: Initial and desigred positions with two boats

Applying the three steps described above we will obtain the configuration shown in fig. 2.4 (left). After this, if the
black boat navigates back to its initial position (this procedure is called U), we obtain the same configuration that
is initial for A1. Thus, applying A1 we will reach the desired output configuration for the two boats problem fig.
2.4 (right).

Figure 2.4: Configuration after applying A1

That means that if the initial condition is as shown in fig. 2.3 (left) and we apply A1 we obtain the configuration
shown in 2.4 (left). Applying U leads to the position shown in 2.4 (right) and the initial condition for the one boat
problem has been established, thus after applying A1 we should obtain the desired final configuration.
Hence, the algorithm tor the two boats problem A2 can be described as A2 = A1, U,A1 (in words: execute A1, then
U and A1 again).

Now suppose that the algorithm An manages to bypass n white boats (fig. 2.5). Note that we already considered
this algorithm for the special cases n = 1 and n = 2.

Consider the n+1 boat problem with initial and final configurations as shown in fig. 2.6 (upper left and right) and
execute the algorithms A1, U , we obtain the initial configuration for the An algorithm (its proper input) as shown
in fig. 2.6 lower left and wight).

Obviously, after executing An we obtain the desired final configuration (see fig. 2.6 upper right).

As a result, we have An+1 = A1, U,An. As we know the exact description of A1, we can easily calculate A2 (here,
n+ 1 = 2 and n = 1: First execute A1, then U and then A1 again; To compute A3, execute A1, then U and then
A2 as described above: A3 = A1, U,A1, U,A1.
Hence, we can compute the exact description of the ”recursive” algorithm An for any N ∈ N:

An = A1, U,An−1

= A1, U,A1, U,An−2

= A1, U,A1, U,A1, U,An−2

= A1, U,A1, U, · · · , A1︸ ︷︷ ︸
n-times

Exercise 2.1: What is A7? (example: A4 = A1, U,A3 = A1, U,A1, U,A1, U,A1)

Note that the algorithm An ”uses itself” with lower parameter (e.g., A2 = A1, U,A1; A7 = A1, U,A6 etc.)
If an algorithm ”uses itself”, it is called recursive. Hence An = A1, U,An−1 is a recursive algorithm.
Note that any recursive algorithm can be described non-recursively as a so-called iterative algorithm where one
or more operations are executed consecutive and repeated several times.
In our example, the n-boat algorithm can be described as follows:

CHAPTER 2. RECURSION AND ITERATION 10

boats boats

Figure 2.5: Initial and final configurations for the general algorithm An

Figure 2.6: Configurations for An+1

The part of the algorithm that is repeated is called a cycle and the sequence of instructions to be repeated is
called its body.
Exercise 2.2: prove that the number of steps of An is 4n (formally we write T (An) = 4n).
Exercise 2.3: How can we change the algorithm to have T (A′

n) = 4n− 1?

Algorithm 2.2: Boats Problem
(Non-recursive – iterative – version)
Input: n ∈ N (number of boats)

1: repeat n-times:
2: {
3: White boat enters the bay;
4: Black boat passes by;
5: White boat comes out of the bay;
6: Black boat goes backwards
7: }

End of the Algorithm

CHAPTER 2. RECURSION AND ITERATION 11

2.2 Towers of Hanoi

In 1883, a french mathematician Eduard Lukas stated the following problem:

Input: Three rods A, B, C. On A we have n disks of different sizes to form a pyramid (smaller on larger, see fig.
2.7 (a)).

Figure 2.7: Initial and final states of the Towers of Hanoi problem

Output: The initial pyramid on rod C (fig. 2.7 (b)).

Restriction: One and only one upper disk should be taken from top of one rod and moved to the top of another rod;
No larger disk can be placed on top of the smaller one.

Figure 2.8: Proper (a) and improper (b) moves

Consider the simplest case of a one-disk pyramid (n = 1). Obviously, one move suffices to complete the task. For

formal description, moving one disk from A to C will be described as AA,C
1 .

In order to move a two-disk pyramid from A to C, the following steps must be completed:

1. From A, move the upper disk to B (algorithm AA,B
1 , fig. 2.9 (b));

2. From A, move the upper disk to C (algorithm AA,C
1 , fig. 2.9 (c));

3. From B, move the upper disk to C (algorithm AB,C
1 , fig. 2.9 (d)).

Formally, we denote the above process of transportation of a two-disk pyramid as AA,C
2 .

Generally, the algorithm that moves an n-disk pyramid from one rod X1 to another X2 can be described as AX1,X2
n .

Here, n ∈ N, X1, X2 ∈ {A,B,C} da X1 ̸= X2.

For example, AC,A
13 denotes an algorithm that moves a 13-disk pyramid from C to A, and AB,A

108 denotes an algorithm
that moves 108-disk pyramid from B to A.
Knowink how to move a two-disk pyramid from one rod to another, we can easily construct an algorithm AA,C

3 to
move a 3-disk pyramid:
Consider a three-disk pyramid as a two-disk pyramid put on one largest disk (fig. 2.12 (a)).

Obviously, due to AA,B
2 , the upper two-disk pyramid can be moved to B (fig. 2.12 (b)), and then by AA,C

1 , the

largest disk will be moved from A to C (fig. 2.12 (g)) and finally by AB,C
2 , the two-disk pyramid will be moved

from B to C (fig. 2.12 (d)).

CHAPTER 2. RECURSION AND ITERATION 12

Figure 2.9: Operations needed to move a two-disk pyramid

Figure 2.10: moves for A3

By the recursive definition we have AA,B
3 = [AA,B

2 , AA,C
1 , AB,C

2] (first execute AA,B
2 , then AA,C

1 and finally AB,C
2).

Note that AA,B
2 and AB,C

2 consist of several steps: AA,B
2 = [AA,C

1 , AA,B
1 , AC,B

2] and AB,C
2 = [AB,A

1 , AB,C
1 , AA,C

2].

Exercise 2.4: Describe recursively AB,C
3 , AC,A

3 , AA,B
3 , AB,A

3 da AC,B
3 .

Knowing how to move a three-disk pyramid, we can easily describe an algorithm for four disks by recursion: AX1,X2

4

(e.g., AA,C
4 = [AA,B

3 , AA,C
1 , AB,C

3].

Exercise 2.5: Describe recursively AB,C
4 , AC,A

4 , AA,B
4 , AB,A

4 and AC,B
4 .

Knowing how to move an n-disk pyramid, we can easily describe an algorithm for n+1 disks by recursion: AX1,X2

n+1

(see fig. 3.1):

AX1,X2

n+1 = [AX1,X3
n , AX1,X2

1 , AX3,X2
n], X1 ̸= X2 ̸= X3, X1, X2, X3 ∈ {A,B,C}.

Like above, to make things easier, in this example we show the move of n disks at once despite the fact that it
consist of many steps.

Exercise 2.6: Explain the meaning of the following notations: AB,C
7 , AC,B

12 , AB,C
4 .

It is easy to show that during the execution of AX1,X2

1 , no restriction is violated. According to the recursive

description of AA,C
2 , the first steps are from AA,B

1 . Obviously, no restrictions are violated during its execution.

Next, AA,C
1 should be executed. Since C is empty, the disk from A can be moved without violations and C will

contain the largest disk. Due to this, the last steps, AB,C
1 , can be executed without problems (the largest disk does

not block the rod).

CHAPTER 2. RECURSION AND ITERATION 13

Figure 2.11: Operations needed to move an n+ 1-disk pyramid

Similarly we can reason that if AA,C
3 described as above is executed, no restrictions are violated: First, AA,B

2 is
executed (fig. 2.12(a)). It does not violate the restrictions because B da C are empty and A has the largest disk on
the bottom. as a result, we obtain the largest disk on A and a two-disk pyramid on B (fig. 2.12i(b)). The second

stage is AA,C
1 that obviously does not violate any condition. The resulting configuration (the largest disk on C and

a two-disk pyramid on B with ampty A, fig. 2.12(g)) is the input of the last sub-algorithm AB,C
2 .

Exercise 2.7: Show that the execution of AB,C
2 with the described input does not violate any restriction and the

resulting configuration will be the solutionn of a 3-disk Towers of Hanoi problem (fig. 2.12(d)).

Figure 2.12: Operations needed to solve the 3-disk Towers of Hanoi problem

Exercise 2.8: Explain the operations that will be executed according to the term HA,C
3 = [HA,B

1 , HA,C
2 , HB,C

1]. Is
there any cviolation of restrictions possible during the computation?

Now consider the iterative description of the Tower of Hanoi algorithm axla ki ganvixiloT hanois koSkebis iteraciuli
algoriTmi:

Algorithm 2.3: Towers of Hanoi
(Non-recursive – iterative – version)
Input: n ∈ N (The number of disks forming a pyramid on the rod A, the rods B and C are empty)

1: Repeat until the n-disk pyramid is moved from A to another rod
2: {
3: Move the minimal disk to right (of from C to A);
4: Move the non-minimal disk (there will be only one possibility)
5: }

End of the Algorithm

Note that, despite its simple description, the prove of the correctness of the iterativealgorithm is quite complicated.

CHAPTER 2. RECURSION AND ITERATION 14

Also, the estimation the number of its steps is also difficult because the number of the repetition of the cycle body
is not clear.
These questions will be discussed in the next chapter.

Exercise 2.9: Consider the above iterative algorithm. To which rod will it move 3, 4, 5 and 6 disk pyramids beginning
with rod A?
In general, to which rod will it move an odd-disk and even-disk pyramid?

CHAPTER 2. RECURSION AND ITERATION 15

2.3 Ancient Greek Problems: Ruler-and-Compass Constructions

Since ancient Greece, the so-called ”ruler-and-compass construction” problems were stated, some of them remaining
unsolved for several thousand years until novel techniques and theories were developed in the 19th sentury with
deep insight into the core of modern mathematics. The answers to the unsolved problems were intriguing: they
all turned out to be unsolvable with available methods (resources). Thus, they can be considered as the oldest
unsolvable problems of human history. However, it should be mentioned that, in the contrary to other generally
unsolvable problems, they are not solvable using only compass and ruler but can be solved with other methods.

Input: Compass, ruler and two points on the plane (the distance between them assumed to be 1);
Any geometric figure;
A real number ξ ∈ R.

Output: Define if the given figure or two points with distance between them equal ξ are constructable with compass
and ruler.

Restriction: With a ruler, one can only draw a line between two points A,B or extend an existing line as desired;
Given any three points A, B and O, one can draw a circle with center O and radius |A,B| (fig. 2.13).

Figure 2.13: Geometric objects constructed with a ruler and a compass

Given a set of (already constructed) points S = {A1, A2, ..., An}, a closed path of broken lines on some of them
with its interior form a geometric figure that can be constructed by ruler and compass.

Definition 2.1: Here we determine some formal notations:

• ∀ for all;

• ∃ exists;

• ∈ belongs to;

• ⇒ it follows

A new point An+1 is said to be constructed with ruler and compass if:

• ∃ Ai, Aj , Ak, Al ∈ S (to be read as: there exist points Ai, Aj , Ak, Al, that belong to the set S) and An+1 is
the intersection point of the lines (Ai, Aj) and (Ak, Al) (fig. 2.14 left);

• ∃ Ai, Aj , Ak, Al, O ∈ S and An+1 is an intersecting point of (Ai, Aj) and a circle with centre O and radius
|Ak, Al| (fig. 2.14 middle);

• ∃ Ai, Aj , Ak, Al, O1, O2 ∈ S amd An+1 is an intersection point of the circles with centre O1, radius |Ak, Al|
and centre O2, radius |Ai, Aj | (fig. 2.14 right).

Note that some of the points Ai, Aj , Ak, Al, O1, O2 ∈ S can coinside and S is the set of already constructed points.

A geometric figure is said to be constructed with ruler and compass if it is bordered by a closed sequence of
consecutive line segments whose endpoints are already constructed with ruler and compass.

a real number ξ ∈ R is said to be constructible by ruler and compass if two points A and B with the distance
|AB| = ξ are constructible.

CHAPTER 2. RECURSION AND ITERATION 16

Figure 2.14: Construction of new points with compass and ruler

Initially, two points A′ adn B′ are given with the distance |A′, B′| = 1 between them (the unit 1 is constructed).
To construct the number 2 (to construct two points with the distance of 2 units between them), the following
algorithm can be applied (in general, for already constructed points A and B, this algorithm will construct the
number |A,B|+ 1):

Input: Two points A and B

1. draw a line on A and B;

2. Draw a circle with center B and radius 1;

This circle will intersect the AB line in two points: D (in the direction to A) and C (in the opposite direction
to A).

3. Output: A and C.

Figure 2.15: Constructing |A,B|+ 1

Denoting this algorithm by N , with the input A and B, we have N(A,B) = (A,C). Obviously, |A,C| = |A,B|+1.
Given two initial points A and B with distance 1 between them, one can construct any natural n ∈ N with the
following recursive algorithm:

• P1 = (A,B);

• Pn = N(Pn−1).

Exercise 2.1: With given points A,B,C,D, write an algorithm that constructs a line segment with the length
|A,B|+ |C,D|. Prove its correctness and count the number of steps (assume that one step is either drawing a line
or a circle).

Exercise 2.2: With given points A,B with |A,B| > 1, write an algorithm that constructs a line segment with the
length |A,B| − 1. Prove its correctness and count the number of steps (assume that one step is either drawing a
line or a circle).

Given two points A and B, it is easy to construct the linear bisector and also the middle point of the line segment
[A,B]:

Input: Two points A and B (fig. 2.16 (a)).

CHAPTER 2. RECURSION AND ITERATION 17

• Draw a circle with center A and radius |A,B|;

• Draw a circle with center B and radius |A,B| (fig. 2.16 (b))

Result 1: Intersection points of the circle C and D.

• Draw a line on C and D (fig. 2.16 (g)).

Result 2: Intersection point K of this line and the segment A,B.

• Output: Two points C da K (fig. 2.16 (d)).

K is the middle point and (C,K) is the linear bisector.

Exercise 2.3: Prove the correctness of the above algorithm and count the number of its steps.

Figure 2.16: Construction of the linear bisector and the middle point of [A,B]

Denoting this algorithm by P (A,B) we have P (A,B) = (C,K).

Given two points A, B and C outside the line (A,B), we can construct a perpendicular line to (A,B) on C. That
means that we construct a point D such that the line (CD) is perpendicular to the initial line (AB):

Input: Three points A, B and C not on (A,B) line (fig. 2.17 (a)).

• Draw a circle with centre C and radius |A,C| (fig. 2.17 (b));

Result 1: An intersection point L of this circle and (A,B);

• Execute P (A,L);

Result 2: Points K and T , where T lies on (A,B) line (fig. 2.17 (g)).

• Oitput: Two points C and T (fig. 2.17 (d)).

Exercise 2.4: In the algorithm above, P (A,L) should be executed. Give a detailed description of the complete
process by drawings.

Exercise 2.5: What happens if the circle with centce in C and radius |A,C| touches the (A,B) line in one point
without the second point L?

Exercise 2.6: Explain why we obtain two additional points K, T after the execution of P (A,L).

CHAPTER 2. RECURSION AND ITERATION 18

Figure 2.17: Constructing a perpendicular line from a given point

Exercise 2.7: Prove that the line (C, T) is perpendicular to the line (A,B).

Exercise 2.8: Given three co-linear points A, B and C between them. Write an algorithm that constructs a perpen-
dicular line to (AB) that contains C.

Exercise 2.9: Given three points A, B and C not on (AB). Write an algorithm that constructs a line parallel to
AB containing C.

For two constructed numbers a1, a2 ∈ N we can construct two points B1, B2 so that |B1, B2| = a1 · a2:

Input: Four points A1, A2, A3, A4 with |A1, A2| = a1 and |A3, A4| = a2;

• On A1, construct a line perpendicular to (A1, A2) (fig. 2.18 (a)) ;

• Mark a new point E on it with |A1, E| = 1 (fig. 2.18 (b));

• On the same new line mark a point F with |A1, F | = |A3, A4| (fig. 2.18 (b)).

• Construct a line on E and A2;

• Construct a line on F parallel to (E,A2);

Result: Intersection point of this line with (A1, A2) (fig. 2.18 (g));

• Output: Two points A1 and K (fig. 2.18 (d)).

Exercise 2.10: Prove that |A1,K| = a1 · a2. Hint: use the triangle similarity properties.

Exercise 2.11: Prove that the algorithm is correct if a2 < 1.

Similarly, for given four points A1, A2, A3, A4 with |A1, A2| = a1 and |A3, A4| = a2, we can construct a1

a2
:

Input: Four points A1, A2, A3, A4 with |A1, A2| = a1 da |A3, A4| = a2;

• On A1, construct a line parallel to (A1, A2) (fig. 2.19 (a));

• Mark a new point E on this line with |A1, E| = 1 (fig. 2.19 (b)) .

CHAPTER 2. RECURSION AND ITERATION 19

Figure 2.18: Construction of a line segment with the length |A1, A2| · |A1, F |

• On the same line, mark a new point F with |A1, F | = |A3, A4| (fig. 2.19 (b));

• Construct a line on F and A2;

• E, construct a line parallel to |F,A2|;

Result: An intersection point K of this line with (A1, A2) (fig. 2.19 (g));

• Output: Two points A1 and K (fig. 2.19 (d)).

Exercise 2.12: Prove that |A1,K| = a1

a2
. Hint: use the triangle similarity properties.

Thus we can construct any positive natural n ∈ N and rational number a ∈ Q using the above algorithms recursively.

A natural question arises: Can we construct irrational numbers using only ruler and a compass?
The first irrational number that can be constructed using Pithagora’s theorem is

√
2.

Exercise 2.13: Write an algorithm S(A,B) with |AB| = 1 that constructs
√
2. Draw the diagrams for each step of

the algorithm (similar to the algorithms above).
Prove its correctness and count the number of steps.

Exercise 2.14: Write an algorithm S′(A,B) with |AB| =
√
a that constructs

√
a+ 1. Draw the diagrams for each

step of the algorithm (similar to the algorithms above).
Prove its correctness and count the number of steps.

Obviously, the following algorithm H(n) gives two points with the distance beetween them equal to
√
n, n ∈ N:

Algorithm H(n):

• If n = 1, Output: A,B with |A,B| = 1 End of the algorithm;

• If n > 1:

Execute S(H(n− 1)).

CHAPTER 2. RECURSION AND ITERATION 20

Figure 2.19: Construction of |A1,A2|
|A1,F |

Exercise 2.15: Using the above algorithms, construct an algorithm that computes
√
a for any a ∈ Q+.

Now consider the following algorithm:

Input: A1, A2 with |A1, A2| = ξ (fig. 2.20 i(a)).

• On the left-hand side of A1 mark a new point B on (A1, A2) with |B,A1| = 1 (fig. 2.20 (b));

• Construct a circle with diameter [B,A2] (fig. 2.20 i(g));

• Construct a perpendicular line to (A1, A2) on A1 (fig. 2.20 (d));

Result: An intersection point P of this line and the circle (fig. 2.20 (d));

• Output: A1 and P .

Figure 2.20: r
√
|A1, A2| sigrZis monakveTis agebis procesi

Exercise 2.16: Prove that |A1, P | =
√
|A1, A2| =

√
ξ. Hint: use the triangle similarities properties.

CHAPTER 2. RECURSION AND ITERATION 21

Exercise 2.17: Given two points A and B, how can we construct a circle with the diameter [A,B]?

Exercise 2.18: Consider three points O, A and B. The rays [O,A) and [O,B) from O form an angle ∠ AOB = α.
Construct an algorithm that, given the points O, A and B, computes the points O, A, C such that ∠ AOC = α

2 .

Now we can state some ancient problems that remained unsolved for over to thousand years. They were very
important in practical engineering (e.g. huge building construction) already known to the Babylonians:

• Squaring the circle: Consider a circle with centre O and radius 1. How can we construct a square with
the same area as the above circle?

A fundamental fact in geometry (known to the ancient Egyptians) says that the area of a circle is proportional
to the sqare of its diameter, and in ancient Greece it was proved to be equal to π (the ratio of the length of
a circle to its diameter).

• Cube root: Consider two points with a distance a between them. How can we construct two points with
distance 3

√
a between them?

• Angle trisection: Given three points O, A and B and two rays [O,A) and [O,B) starting from O, and
creating romelic O wertilSi qmnis kuTxes ∠ AOB = α. How can we construct a point C such that ∠ AOC =
α
3 ?

• Regular n-Sided Polygons: Given a number n ∈ N, how can we construct an n-Sided Polygon with equal
sides?

The problems above remained unsolved for more than two millennia until the first three were proved to be unsolvable.
The last was solved by the famous Gauß formula.
Here we sketch the main ideas of the proofs.

A new point can be constructed only as an intersection of two already constructed lines (solution of a first-order
equations), or two already constructed circles (solution of a second-order equations) or one already constructed
line and already constructed circle (solution of a second-order equations). Hence (using the composition method)
the coordinates of a new point should be the solutions of power-of-two-order polinomial equations with rational
coefficients: a2nx

2n + a2n−1x
2n−1 + · · ·+ a1x+ a0 = 0, n ∈ N, ai ∈ Q.

Since 3
√
a is not a solution of this kind of equation, this construction should be impossible with compass and ruler.

As shown by German mathematician Ferdinand von Lindemann in the 19th senctury, π is a transcendental number,
meaning that it is not a solution of any polynomial equation with rational coefficients. It can be expressed only by
an endless series (endless sum – endless polynomial). Since the construction process of a point with compass and
ruler should be completed in finite time, its coordinates should be expressed by finite polynomial equation with
rational coefficients. This completes the proof that no two points with the distance π can be constructed. Since a
square with area of a unite circle (with radius 1) should have a side of the length

√
π, and π is not constructable,

this kind of square should not be constructable using only compass and ruler.

At the end of the 18th century, the 18 year old Karl Friedrich Gaußdiscovered a method to construct a regular
17-gon (heptadecagon) thus solving a problem that remained open for over 2000 years. The general formula for
constructable regular polygons is:
An n-gon is constructable iff (if and only if) ∃m, q1, ..., ql ∈ N0 such that

n = 2m · (22
q1

+ 1) · (22
q2

+ 1) · · · (22
ql
+ 1).

Due to this formula we conclude that a pentagon, 17-gon, and a 65537-gon are all constructable, but a 7-gon is not
constructable with ruler and compass.

The problem of polygon construction is connected to the very important problem of n-th roots of unity that is also
applied in algorithm design (to be discussed in later courses).

Exercise 2.19: What is the method to construct a hexagon? An octagon?

Exercise 2.20: (Not-so-easy exercise) Give a method to construct a pentagon.

CHAPTER 2. RECURSION AND ITERATION 22

Note that for the ancient problems, no construction method exists using only a ruler and a compass. That does
not mean that there do not exist construction methods using other resources. In the contrary to other problems
we will discuss later and that turned out to be unsolvable with any tools, the unsolvability of the ancient problems
are due to the limited resources.

Open problem: In the above formula, 22
q

+ 1 is a so called Fermats prime number. It was widely believed for a
long time that this formula delivers only the primes. But this belief was disapproved. In fact, it mostly delivers
combined numbers.
An important open question is wether this formula delivers an infinite amount of primes.

2.4 Summary

In this chapter we introduced the concepts of the so called recursive and iterative algorithms. In the recursive de-
scription, the algorithm recalls itself with lower parameters, in the iterative one it repeats a sequence of instructions
several times building a so-called cycle.
Both methods have their advantages ind dissadvantages depending on the special problem and its realisation needs
to be discussed in details later.
As a nice example of the recursive algorithms we considered ancient problems of ruler-cpmpass constructions that
remained unsolved for over 2000 years until their solutions with modern mathematical techniques in the 19th
century.
These problems are also interested in the computational sense. Here we see the unsolvability concept, however only
with the restriction of resources. With other tools it may be solvable.
In general, there exist some problems that can not be solved in finite time using any resources, but we will discuss
this kind of problems later.

Chapter 3

Mathematical Induction and its
Applications

3.1 Mathematical Induction

Consider a sequence of all odd numbers:

a1 = 1, a2 = 3, a3 = 5, a4 = 7, ...
Obviously, its elements can be described as ai = 2 · i− 1.
Now let us calculate the sum of the first n elements:

Sn = a1 + a2 + a3 + · · ·+ an.

Recursively, it can be desribed as

Sn = Sn−1 + an

(first n− 1 odd numbers plus the n-th odd number).

Exercise 3.1: Give the recursive descriptions for Sn+1, Sn−1, Sn−2 and Sn−3.
First let us calculate few elements:

S1 = a1 = 1
S2 = a1 + a2 = 4
S3 = a1 + a2 + a3 = 9
S4 = a1 + a2 + a3 + a4 = 16
S5 = a1 + a2 + a3 + a4 + a5 = 25
· · ·

Examining the right side of the equations we can see some regularity: the sums build squares of natural numbers:
S1 = 12, S2 = 22, S3 = 32, S4 = 42, S5 = 52.
This gives us the first clue about the general rule of the sums: Si = i2.
Note that this is only a clue, the observation of some experimental results. Even checking the hypothesis for millions
of cases will only strengthen the proposition. Mathematically, we need a formal proof for every n.
To accomplish such a proof, a special technique called ”mathematical induction” is needed. It can be fulfilled
in three steps:

1. Verification: Verify the conjecture for n = 1;

2. Assumption: Assume the conjecture is true ∀k = 1, 2, ..., n;

3. Induction step: Prove the conjecture for n+ 1.

23

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 24

After thes steps we obtain: If the conjecture is true for n = 1, assume n = 1 in the second step of the above process;
If it is proved to be true for n+ 1 (step 3), then it should be true for n = 2; now assume n = 2 in the second step
and we can prove that it is true for 2 + 1 = 3 and so on.

In our example above we have:

1. Verification: n = 1: S1 = 12 = 1;

2. Assumption: Assume Sn = n2;

3. Induction step: Show Sn+1 = (n+ 1)2.
According to the recursive formula, Sn+1 = Sn + an+1 = Sn + 2 · (n+ 1)− 1 = Sn + 2 · n+ 1.
According to the assumption, Sn = n2 and we have: Sn+1 = n2 + 2 · n+ 1 = (n+ 1)2

that proves the assumption for every n.

If the recursive formula is written in non-recursive form (with only constants and variables), we say that the
recursion has been solved.

Using the above principles we will prove one more mathematical conjecture:

A sequence is given recursively as S1 = 1, Sn = Sn−1 + n. Prove that Sn = n·(n+1)
2 .

1. Verification: n = 1: S1 = 1·(1+1)
2 = 1;

2. Assumption: Sn = n·(n+1)
2 ;

3. Induction step: Prove Sn+1 = (n+1)·(n+2)
2 .

Since Sn+1 = Sn + (n+ 1), due to the assumption, Sn+1 = n·(n+1)
2 + (n+ 1) = (n+ 1)(n2 + 1) = (n+1)·(n+2)

2 .

Exercise 3.2: Using mathematical induction prove that every odd number can be described as ai = 2 · i− 1.

Exercise 3.3: Solve the following recursion: S1 = 3, Sn = Sn−1 + n.

Exercise 3.4: Solve the following recursion: K1 = 7, Kn = Kn−1 + 2n.

Exercise 3.5: Solve the following recursion: P1 = 1, Pn = Pn−1 + 2n.

Exercise 3.6: Solve the following recursion: L1 = 7, Ln = 2 · Ln−1.

3.2 Applications: Correctness and Complexity

Consider the recursive description of the boats problem An = A1, U,An−1 from the previous chapter. We can prove
its correctness using mathematical induction as follows:

• Verification: Obviously, A1 is correct;

• Assumption: An correctly passes n boats (provided the initial configuration is as desired);

• Induction step: Show that An+1 = A1, U,An is correct.

If we can prove the correctness of An+1 (provided that An is correct), knowing that A1 is correct, A2 will be correct.
Since A2 is correct, according to the third step of the mathematical induction, A3 will be proved to be correct etc.
Hence, the assumption will be correct for every natural n.

To prove the correctness of An+1 = A1, U,An, consider the configuration after executing the steps A1, U . Obviously,
it is the proper input for the n-boats problem and can be correctly solved (assumption) by An, meaning that
A1, U,An will solve the n+ 1 boats problem correctly.

Q.E.D.

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 25

Exercise 3.7: Can we solve the n-boats problem by An = An−1, U,A1?

After the prove of correctness of a given algorithm A, we should estimate the number of steps T (An).
First of all, A1 has to be executed, then U and at last An−1, hence T (An) = T (A1) + T (U) + T (An−1) (as many
as needed for A1, then as many as needed for U and at last as many as needed for An−1).
This recursive formula can be solvedas follows:

We know that T (A1) = 3 amd T (U) = 1 (by a simple check) and we get:

T (An) = T (An−1) + 4.

By its own, T (An−1) = T (An−2) + 4, T (An−2) = T (An−3) + 4 ...

Hemce,

T (An) = T (An−1) + 1 · 4 = T (An−2) + 2 · 4 = T (An−3) + 3 · 4 = · · · =
= T (A1) + (n− 1) · 4 = 3 + (n− 1) · 4 = 4 · n− 1.

Exercise 3.8: Prove that no faster algorithm can exist for this problem.

By similar considerations, we can prove the correctness and estimate the number of steps of the Hanoi Towers
algorithm

HX1,X2
n = HX1,X3

n−1 , HX1,X2

1 , HX3,X2

n−1 .

• Verification: HX1,X2

1 is correct (obvious);

• Assumption: Assume that HX1,X2

k is correct for all k ≤ n ∈ N;

• Induction Step: Prove that HX1,X2

n+1 = HX1,X3
n , HX1,X2

1 , HX3,X2
n is correct (assumed Hn is).

First, the algorithm HX1,X3
n moves the upper n disks from X1 to X3 (fig. 3.1(a)). According to the as-

sumption, this procedure will be completed correctly (note that during this process, the largest disk remains
on X1 and any other disk can be moved upon it thus not violating the restrictions). After this, we move
the largest disk to X2 (fig. 3.1(b)) creating the initial configuration for HX3,X2

n . applying it we move the
remaining n disks from X3 to X2 (fig. 3.1(g)). As in the steps above, due to the assumption, HX3,X2

n will
move the disks correctly without violating any restriction (since the largest disk is already on X2, it can be
ignored). As a result we obtain all the complete n+ 1 pyramid moved (fig. 3.1(d)).
In the diagram below we have X1 = A,X2 = C,X3 = B.

Figure 3.1: Operations needed to move n+ 1 disks

To estimate the number of needed steps, consider the recursive description

HX1,X2
n = HX1,X3

n−1 , HX1,X2

1 , HX3,X2

n−1 .

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 26

Obviously,

T (HX1,X2
n) = T (HX1,X3

n−1) + T (HX1,X2

1) + T (HX3,X2

n−1).

Exercise 3.9: Explain the meaning of T (HA,C
n+3) and T (HC,B

3) and T (HA,C
7).

Exercise 3.10: What are T (HA,C
1) and T (HA,C

2) equal to?

Exercise 3.11: Prove that T (HA,C
1) = T (HB,C

1) and, in general, T (HX1,X2
n) = T (HY1,Y2

n) ∀X1, X2, Y1, Y2 ∈ {A,B,C}
(no matter from where to where we move the disks – the number of steps remains the same).

Since HX1,X2
n = HX1,X3

n−1 , HX1,X2

1 , HX3,X2

n−1 , first HX1,X3

n−1 should be executed, after it HX1,X2

1 and, at the end, HX3,X2

n−1 .
Hence

T (HX1,X2
n) = T (HX1,X3

n−1) + T (HX1,X2

1) + T (HX3,X2

n−1) = 2 · T (HX1,X2

n−1) + 1

(see the above exercises).

Exercise 3.12: Prove by mathematical induction:

T (HX1,X2
n) = 2n − 1.

Exercise 3.13: Consider the n-boats problem. Prove its correctness and estimate its number of steps.

Exercise 3.14: Consider the iterative algorithm for the n-disk Hanoi Towers problem and estimate its number of
steps.
Note that the above exercise is not easy because it is not clear when the cycle terminates.

This example shows us the negative sides of the iterative description of algorithms. In contrary to recursion, neither
the proof of correctness nor the estimation of steps is easy.
But, as we will see in short, there exist examples where the recursive description leads to specific problems. Hence
one of the main questions in algorithm design is to determine the correct description and data structures to make
them efficient.
One of such problems is the computation of the so called Fibonacci sequence that we will discuss now.

3.3 The Fibonacci Sequence

The famous Italian mathematician of the 12th - 13th cenctury Leonardo da Pisa, better known as Fibonacci, tried
to solve a very practical problem:

A peasant has rabbits that win offspring – exactly one doe a month after two months of age. How many does will
he have starting with one newborn and assuming that the rabbits do not die?

For small n the computation is easy: The first two months only one, then they become 2, then 3 (the offspring of
the eldest, the second is too young), then 5 (offspring of first two, the third too young) etc. In the n-th month
the number of offsprings should be equal to the number of the rabbits that are at least 2 months of age. Hence,
denoting the number of rabbits by Fn, we obtain

F1 = F2 = 1, Fn = Fn−1 + Fn−2

It is also called the Fibonacci Sequence.

We know also that F1 = 1, F2 = 1, F3 = 3, F4 = 5. For some technical reasons, the first element of this sequence is
sometimes defined as F0 = 0 thus describing the sequence as

F0 = 0; F1 = 1; Fn = Fn−1 + Fn−2

for n > 1. The first members of this sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, . . .

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 27

The natural numbers computed by the Fibonacci sequence are called the Fibonacci numbers, Fn and Fn+1 are the
neighbouring numbers.

An interesting fact is that this sequence was also known in ancient Greece and the middle-age India. Some authors
also consider it with F1 = 1 and F2 = 2.
As it turned out, this sequence does by no means calculate the number of rabbits but turned out to have many very
useful properties so that the Fibonacci sequence has many applications in the wide fields of modern theoretical and
practical problem solving.
This fact is also showing how important is to analyse the methods how a problem is tackled. It can totally fail to
solve the initial problem but can open wide horizons and perspectives.
The fibonacci sequence is also very common in nature. For example, the seeds of a sunflower are positioned in
rounded curves in a pattern shown in fig. 3.2.

Figure 3.2: Pattern of seeds in a sunflower

As one can see, the seedings can be considered in two different ways each of them building 55 and 34 curves, two
neighbouring Fibonacci numbers.
Besides this, the number of tree branching or that of the petals are mostly Fibonacci numbers (there are many
flowers with 3, 5, 8, or 13 petals, but exeptionally with 4, 6, 7 or 9).

It is proved that for any n ∈ N, there is an explicit (one and only one) sequence of non-neighbouring Fibonacci
numbers Fi1 , Fi2 , ..., Fik that sum up as n: n = Fi1 + Fi2 + ...+ Fik .
For example, n = 67 can be represented as 67 = 1+ 3+ 8+ 55 = F1 +F4 +F6 +F10 and there exists no other such
representation (of course, we have 67 = 1+ 3+ 8+ 21 + 34, but here are 21 and 34 the neighbouring numbers that
contradicts the statement).
Such an explicit representation creates the so-called Fibonacci code for each natural number that is widely used in
the modern theory of information.

One of the most important open problem of the 20st century, the so-called Hilbert’s 10th problem on the solution
of Diophantine equations, has been solved using the Fibonacci sequence. It is interesting to know that this problem
has initiated the development of the modern theory of algorithms: to solve it, many novel techniques and notions
has been introduced that are also used nowadays.
Worth to mention that this problem turned out to be unsolvable.

The Fibonacci sequence has also many applications in combinatorics.
Consider the following question: In how many different ways can we climb the n-step stairs if we can go one or two
steps at once?
Obviously, if n = 1, there is only one way to climb. If n = 2, two ways are possible: twice one step or two steps at
once. In case of n = 3, three different ways are possible: 1+1+1 or 1+2 or 2+1. n = 4: 1+1+1+1 or 1+1+2 or
1+2+1 or 2+1+1 or 2+2, 5 possibilities in total.
If we denote the number of disfferent ways to climb an n-step stair by Gn, Gn+1 can be calculated by the following
argument: Given an n + 1 step stairs, we can promote by 1 step and then climb the n step stairs (by as many
different ways as possible) or we can promote by two steps at once and then run up the n − 1 step stairs by as
many methods as possible. In total, we get Gn+1 = Gn + Gn−1 different possibilities that coincides exactly with
the Fibonacci sequence. In general,

Gn = Fn+1.

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 28

As a second application consider the problem of covering of a chessboard by domino stones. Given a 2×n chessboard
and n domino stones, each covering exactly two neighbouring fields of the chessboard. In how many different ways
can we cover a 2× n chessboard with n domino stones?

Figure 3.3: Covering a small chessboard by the domino stones

Exercise 3.15: Denote the number of ways we can cover a 2×n board by Pn (in the examples above, P3 = 3, P4 = 5
da P5 = 8).
What is the recursive description of Pn? How is it related to the Fibonacci sequence?

The Fibonacci sequence has following interesting properties (to mention only few):

• F1 + F2 + · · ·+ Fn = Fn+2 − 1;

• F3n is even;

• F5n is dividible by 5;

• F1 + F3 + F5 + · · ·+ F2n−1 = F2n;

• F0 − F1 + F2 − F3 + · · · − F2n−1 + F2n = F2n−1 − 1;

• F 2
1 + F 2

2 + · · ·+ F 2
n = Fn · Fn+1;

• Fn−1 · Fn+1 − F 2
n = (−1)n;

Exercise 3.16: Prove the above equations.

Much more harder to prove are the following properties:

• If n > 4 and Fn is prime, then n is prime (the inverse is not true: ∃p prime so that Fp is not prime);

• If n,m ∈ N and gcd(m,n) is their greatest common divider, then
gcd(Fm, Fn) = Fgcd(m,n)

• Fn+m = Fn−1Fm + FnFm+1;

• F(k+1)n = Fn−1Fkn + FnFkn+1;

• Fn = FlFn−l+1 + Fl−1Fn−1;

• Fn = F 2
(n+1)/2 + F 2

(n−1)/2, if n is odd;

• Fn = F 2
n/2+1 + F 2

n/2−1, if n is even.

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 29

Open problem: Are there infinitely many primes in the Fibonacci sequence?

Exercise 3.17: What is gcd(46368, 21) ?

Exercise 3.18: Write an algorithm that determines if its input is a fibonacci number.

A natural question is: How many steps are needed to compute Fn?

Exercise 3.19: Compute T (Fn) (number of steps – arithmetical operations – needed to compute Fn by a recursive
formula).
Now consider the iterative version of the Fibonacci algorithm that repeats a sequence of operations in a cycle:

Algorithm 3.1: Fibonacci Numbers (iterative version)
Input: n ∈ N
1 r Repeat n-times: { c = a+ b; b = a; a = c; }

End of the Algorithm

Exercise 3.20: Prove that after the execution of this algorithm, a = Fn. What will be the values of the variables c
and b?

Exercise 3.21: Prove that the above algorithm computes Fn in 4n+ 2 steps (consider the addition and assigning as
one step).

Due to this algorithm we can see the clear advantage of the iterative method compared to the recursive one.

An interesting question is, what caused such a great difference in the computation efficiency?
To analyze this question, consider the graphical representation of the computational process of the recursive algo-
rithm:

F5

F4

F2

F3

F1 F2

F3

F5

F4F3

F5

F4

F2

F3

F1 F2

F3

F1 F2

a() b() g()

Figure 3.4: Computation of F5

Each point in the diagram represents the corresponding Fibonacci number that is connected by a line segment with
two lower points representing numbers necessary to compute it. Obviously, to compute F5, the recursive algorithm
computes F3 twice. On its own, F3 consists of the sum of two other numbers, that means that several computations
are redundant: it would be possible to compute F3 only once and to store the result somewhere in order to use it
later in case of need. That would avoid redundant computations.
This example shows the negative sides of the ”blind” recursion: in frequent cases the algorithm proceeds with the
computations that could be avoided.
This was the main reson for the developers of programming languages in the 1960’s and 1970’s to abandon recursion.
Later, after the development of compiler optimisers, this problem has been solved and the recursive functions play
a central role in modern programming theory and practice due to their positive features.

Exercise 3.22: Draw the computation diagrams of F6 and F7 as shown in the above example. How many redundant
steps are proceeded in each case?

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 30

Naturally, it would be much more convenient and fast to compute the Fibonacci numbers by a non-recursive formula.
In fact, such a formula can be represented as

Fn =
1√
5

·

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Exercise 3.23: Prove the correctness of this formula using mathematical induction.
A natural question would be: how could anibody deduce this kind of formula?
The most plausible way could be the induction: observation of the sequence, experimenting with its members
and deducing some regularities. At a glance, no regularity can be discovered except the defining equation Fn =
Fn−1 + Fn−2:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368, . . .

But if we analyse the fractions of the neighbouring numbers, a sort of regularity can be observed:

Tn = Fn

Fn−1
(n > 1):

T2 = 1
1 = 1; T3 = 2

1 = 2; T4 = 3
2 = 1, 5; T5 = 5

3 ≈ 2, 666667;

T6 = 8
5 = 1, 6; T7 = 13

8 = 1, 625; T8 = 21
13 ≈ 1, 615; T9 = 34

21 ≈ 1, 619;

T10 = 55
34 ≈ 1, 6176; T11 = 89

55 ≈ 1, 618; T12 = 144
89 ≈ 1, 61798; T13 = 233

144 ≈ 1, 61805;

T14 = 377
233 ≈ 1, 618026; T15 = 610

377 ≈ 1, 618037; T16 = 987
610 ≈ 1, 618033; T17 = 1597

987 ≈ 1, 618034;

T18 = 2584
1597 ≈ 1, 618034; T19 = 4181

2584 ≈ 1, 618034; T20 = 6765
4181 ≈ 1, 6180339887; T21 = 10946

6765 ≈ 1, 6180339887;

T22 = 17711
10946 ≈ 1, 6180339887; T23 = 28657

17711 ≈ 1, 6180339887; T24 = 46368
28657 ≈ 1, 6180339887...

The sequence Tn (the fracton of the neighbouring numbers) converges to some fixed number (meaning that the
difference between the Fibonacci numbers and this specific number is getting smaller and smaller and tends to go
closer to zero as we observe higher Fibonacci numbers). In fact, it is proved that

lim
n→∞

Fn

Fn−1
= Φ ≈ 1, 6180339887.

Here Φ = 1+
√
5

2 is the so called ”Golden ratio” already known to the ancient Greeks (see the exercise to construct
a pentagon with compass and ruler).

In our case that means that the starting from some point, the Fibonacci sequence behaves very similarly to a
geometric progression.
Hence we can suppose that there are more similar properties and there exist a sequence

Gn = c · qn,

that coincides with the Fibonacci sequence (at least from some point on) for some specific c, q ∈ N. But how can
we determine these numbers?

Of course, the sequence (Gn)
∞
n=1 itself should satisfy the Fibonacci condition

Gn = Gn−1 +Gn−2

and
c · qn = c · qn−1 + c · qn−2

Dividing both sides of the equation by c · qn−2, we obtain an equation due to which we can define q:

q2 = q + 1.

Its solutions are

q1 =
1 +

√
5

2
r da q2 =

1−
√
5

2
.

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 31

As a result, we obtain two sequences

G′
n = c ·

(
1 +

√
5

2

)n

and G′′
n = c ·

(
1−

√
5

2

)n

,

both of them satisfying the Fibonacci condition.
All we have to do is to choose one of them or some combination of both and to determine the parameter c so that
the resulting sequence coincides the Fibonacci sequence (Fn)

∞
n=1.

Consider the sequence G′
n. If n = 1 then G′

1 = c · 1+
√
5

2 and because we want G′
1 = F1 = 1,

c · 1 +
√
5

2
= 1.

Hence c = 2
1+

√
5
. But in this case G′

2 = 2
1+

√
5
·
(

1+
√
5

2

)2
̸= F2 = 1 meaning that (G′

n)
∞
n=1 by itself can not coincide

to the Fibonacci sequence.

Exercise 3.24: Prove by similar arguments that (G′′
n)

∞
n=1 does not coincide the Fibonacci sequence as well.

Now consider the sequence

Hn = G′
n −G′′

n = c ·

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Exercise 3.25: Prove that the above sequence (Hn)
∞
n=1 satisfies the Fibonacci condition.

Exercise 3.26: Consider H ′
n = G′

n +G′′
n. Does it satisfy the Fibonacci condition?

Obviously, H0 = 0 and the starting elements coinside. Now consider H1:

H1 = c ·

((
1 +

√
5

2

)
−

(
1−

√
5

2

))
.

Since it shoul coincide with the first element of the Fibonacci sequence, we solve the following equation:

H1 = c ·

((
1 +

√
5

2

)
−

(
1−

√
5

2

))
= 1

and obtain q = 1√
5
.

Hence

H1 =
1√
5

·

((
1 +

√
5

2

)
−

(
1−

√
5

2

))
.

Since the sequence (Hn)
∞
n=1 satisfies the Fibonacci condition and its first two members also coincide with that of

Fibonaccis, they should coinside comletely.:

Hn =
1√
5

·

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Q. E. D.

Exercise 3.27: Consider H ′
n = G′

n +G′′
n = c′ ·

((
1+

√
5

2

)n
+
(

1−
√
5

2

)n)
.

Can we choose c′ so that the sequence H ′ coincides with the Fibonacci sequence?

Analysing the process of deducing the non-recursive formula, several fundamental moments should be emphasized:

• First of all, we ”carry out” an experiment: like physicists observe natural events, biologists – living organ-
isms, mineralogists – minerals, we observe the sequence of numbers and their relations and try to find some
regularities in it. This observation and deduction process is called induction not to be confused with the
notion of mathematical induction above. In ”experiments” we mean exactly the test of different relations –
the difference of neighbours, their sum, multiplications, fractions etc.;

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 32

• During one of such experiments we discovered certain regularity: the fraction of neighbouring Fibonacci
numbers tend to go closer to a particular number (converge to this number);

• This regularity gave us the hint to make some analogy: Since the fraction converges to some particular
number – like any geometric progression does – it is possible for this sequence to have also other similar
properties;

• Due to this, we have a new object to analyse: a geometric progression with Fibonacci property.

The above explicit formula has been deduced after the closer look, investigation and analysis of this kind of sequence.

In general, the idea of science can be formulated similarly: observing the objects, experimenting with them, discov-
ering regularities and searching their reasons.
Our object of investigation was the sequence of numbers, and the discovered regularity – its analogy to geometric
progressions. The reason of this regularity could be that our initial sequence (the Fibonacci sequence) in its core is
the analogon of geometric progressions.

3.4 Pascal’s Triangle

The so called Pascal’s triangle is a triangular list of natural numbers where each number is the sum of its two upper
neighbours, starting with 1:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

For example, the second element of the fourth raw is equal to 3 because its upper neighbours (the first and second
element of the third raw) are 1 and 2.
The Pascal’s triangle has wide range of applications in theory and practice. However known already in the ancient
Greece and the middle-age Iran, its applications are related to the French mathematician Blaise Pascal thus its
name used in Europe (on the contrary, in the Middle-Eastern world it is known as the triangle of the famous Iranian
poet and philosopher Omar Khayyam).

What is the use of the Pascal’s Triangle?
As its widest application, the computation of the n-th power of the sum of two numbers can be considered:

(x+ y)n = an,0x
n · y0 + an,1x

n−1 · y1 + an,2x
n−2 · y2 + · · ·+ an,n−1x

1 · yn−1 + an,nx
0 · yn

For any fixed n, we get a so called polynome of two variables of power n (a sum of n+ 1 elements where the sum
of the powers of the variables is constantly equal n).
For example,

(a+ b)0 = 1,
(a+ b)1 = a+ b = 1a1b0 + 1a0b1,
(a+ b)2 = a2 + 2ab+ b2 = 1a2b0 + 2a1b1 + 1a0b2,
(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 = 1a3b0 + 3a2b+ 3ab2 + 1a0b3

Observing the above polynoms we can see that their coefficients are exactly the rows of the Pascal’s triangle.
As it turned out, this is always the case: the coefficients of (a + b)n coincide to the n + 1st row of the Pascal’s
triangle:

ai,j = Pi+1,j ,

where Pk,l is the l-th element in the k-th row.

CHAPTER 3. MATHEMATICAL INDUCTION AND ITS APPLICATIONS 33

Moreover, each element Pi,j of the Pascal’s triangle is the so called binomial coefficient:

Pi,j =

(
i− 1
j − 1

)
The number Ck

p ≡
(

k
p

)
denotes the number of different choices of p elements from a k element set. As an

example, if k = 4 and p = 2, consider a 4-element set {a1, a2, a3, a4} (the names of the elements are immaterial).
Its 2-element choices are:

{a1, a2}, {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4}, {a3, a4}, 6 in total: Ck
p ≡

(
k
p

)
=

(
4
2

)
= 6.

This are the topics of Combinatorics we will discuss later.

Exercise 3.28: Write a recursive formula to compute Pn,m.

Note that there exists a general formula Ck
p = k!

p!(k−p)! . Its meaning and the way how it can be deduced will be

discussed later.

Exercise 3.29: Write a recursive algorithm that computes Pn,m. Hint: Use the formula deduced in the previous
exercise.

3.5 Summary

In this chapter we discussed the principle of the mathematical induction that is widely used in the proof of the
properties of recursive and ordered structures. This principle has been applied to prove the correctness and estimate
the number of computational steps of recursive algorithms.
Besides this, we have introduced and analysed two very important sequences: The Fibonacci sequence and Pascal’s
triangle, showing basic ideas of the applications of mathematical induction techniques to deduce general rules and
regularities.
Analysing the iterative and recursive algorithms of Fibonacci numbers, we have shown the main differences between
these two approaches, the main weaknesses of recursion and their reasons.

Chapter 4

Sets and their Cardinality

4.1 Bijection and Countable Sets

The Little Prince owns a herd of black and white sheeps. Mathematically, we can consider it as a finite set (fig.
4.1 left). The Little Prince wants to determine which kind of sheeps more: white or black. To do this, he separates
them in two subherds: the set is divided into two subsets (fig. 4.1 middle).

Figure 4.1: The Little Prince and his sheeps

The groups of white and black sheeps on their own can be considered as two sets. To determine which set consists
of more elements, the Little prince pairs their elements with one another (one black and one white sheep) (fig. 4.1
right).
In other words, one element of one set corresponds to one element of the second set so that two different elements
of the first set correspond to two different elements of the second (two elements do not correspond to one and the
same – two different white seeps correspond to two different blacks). Since after this kind of pairing there are white
sheeps left we can conclude that there are more white sheeps than black ones.

Obviously, this kind of pairing is always possible between two finite sets. Important is that two different elements
of the first set are paired with two different elements of the second. If after this pairing neither set has unpaired
elements left, they should have equal number of elements.

Such a pairing is called Bijection.

A natural question is whether or not is it possible to pair the elements of infinite sets?
Considering the set of natural numbers N = {1, 2, 3, 4, ...} and the set of even numbers 2N = {2, 4, 6, 8, ...}, such a
pairing could be (1 ↔ 2), (2 ↔ 4), (3 ↔ 6), (4 ↔ 8), ... , (n ↔ 2n),

Despite the fact that this process will last forever, we can definitely say that to each element of the set N corresponds
exactly one element of the set 2N no ”redundant” element will be left in any set (by the same arguments we can
conclude that to each element of 2N corresponds an explicit element from N. As mentiond, this kind of mapping is
called a bijection (or on-by-one and onto).

In mathematical language it can be expressed as follows:
Definition 4.1: Consider a mapping f : A → B where A and B are some sets and to each element of A corresponds
exactly one element from B.

34

CHAPTER 4. SETS AND THEIR CARDINALITY 35

Given any element a ∈ A, which is mapped to some b ∈ B by the function f , formally denoted as f : a 7→ b, then b
is called the value of a and and a is called an argument of b.
The sets A and B are called the domain and image of the function f .

• A function f : A → B is called a surjection (or to be surjective) if to each element of B there exists an
element of A so that a is mapped to b. Formally, ∀b ∈ B, ∃a ∈ A, f(a) = b
(in other words, there does not exist an element in the image that has no argument – no element will be
”missed”;

• f : A → B is called injection if two different elements are mapped into two different elements. Formally,
∀a ̸= b, f(a) ̸= f(b);

• f : A → B is a bijection if it is both bijective and surjective (one-by-one and onto)

To conclude, two (finite or infinite) sets have the same ”amount” of elements if there exists a bijective mapping
between them (it is possible to establish a one-by-one correspondence).
Note that it is not correct to speak about the amount of elements in an infinite set. Thats why it is said that two
infinite sets have the same cardinality if there is a bijection between them.
If there is no bijection between A and B but there is a bijection from A to some subset of B it is said that the
cardinality of A is more than the cardinality of B and alternatively that the cardinality of B is less than that of A.

It is worth to mention that we established a bijection between a set and its proper subset. This fact is always false
for finite sets and can only established in case of infinite sets.

This can be used as the definition of an infinite set:

Definition 4.2: A set is called infinite iff (if and only if) we can establish a bijection between this set and its proper
subset.
From this point we can also define what infinity is: Infinity is the number of elements of an infinite set.

The number of elements of a set is also called its cardinal number or cardinality.

If A is a finite set, it is of finite cardinality. The number of its elements is denoted by |A| and we write |A| < ∞.

If there is a bijection between a given set A and the set of natural numbers N, it is said to be countable (we can
”count” its elements).

Obviously, if there exists a bijection between two sets, many (in case of infinite sets infinite) similar bijections
(pairings) exist.
For example, another bijection between the sets of natural and even numbers can be (1 ↔ 4), (2 ↔ 6), (3 ↔ 2),
(4 ↔ 8), (5 ↔ 10), (6 ↔ 12), ... , (n ↔ 2n),

In general, for two finite sets A and B with |A| = |B| = n there exist n! = 1 · 2 · 3 · · ·n different bijections, and
between infinite sets there are either infinitely many or no bijection at all.

Exercise 4.1: Show that there exists a bijection between the sets of natural numbers and the set of whole numbers
Z = {...,−n, ...,−3,−2,−1, 0, 1, 2, 3, ..., n, ...}.

Exercise 4.2: Show that the set of odd numbers is countable.

Now consider the set of positive rational numbers Q+. This set is everywhere dense: in]0; 1[there are
1
2 ,

1
3 ,

1
4 ,

1
5 , ...,

1
n , ... and, in general, between any]q1; q2[there are infinitely many rationals q1+

q2−q1
2 , q1+

q2−q1
3 , q1+

q2−q1
4 , ..., q1 +

q2−q1
n , ...).

Due to this fact one can think that there are ”more” elements in Q+ as in N, because there are infinitely many
rationals between any two naturals. However, the following is true:

Theorem 4.1: The set Q+ of positive rationals is countable.

Proof: To show this, we explicitly construct such a counting method (this technique is called proof by construction:
to prove something we construct and show it).

CHAPTER 4. SETS AND THEIR CARDINALITY 36

First of all, we ”write down” all the positive rationals:

1
1

1
2

1
3

1
n

2
1

2
3

2
4

2
m

3
1

3
2

3
4

3
k

n
1

n
2

n
4

n
p

1
1

1
2

1
3

1
n

2
1

2
3

2
4

2
m

3
1

3
2

3
4

3
k

n
1

n
2

n
4

n
p

The first row contains all the positive rationals with numerator 1 and denominator n ∈ N; The second row contains
all the simple fractions with the numerator 2, the third with numerator 3 etc.

Obviously, this infinite table contains all the positive rationals (however, it can not be written completely, it is just
a theoretical structure. But note that any positive rational can is listed there).
We count the positive rationals as follows: As the first element we will take the upper leftmost rational 1

1 . the second
will be the first element of the second row, after which we proceed up-and-right, numerating the rationals until
getting to the border of the table after which we go to the first element of the next row and repeat the operation
of proceeding up-and-right until reaching the border, going to the first element of the next row and so on infinitely.
It is easy to see that by this method we assign a positive rational to any natural number and vice versa.

Thus we can pair all the positive rationals wit all the natural numbers.
Q.E.D.

Exercise 4.3: Using the above theorem prove that the set Q of all rationals is countable.

This result is interesting but not astonishing: both sets Q and N are infinite, so no wonder that they can be paired.
Here a natural question arises: Are all the infinite sets ”equal” (countable)?

Here we have an astonishing and quite uneqpected counterintuitive answer: There exist infinite sets that are not
countable!
Roughly speaking, there are infinite sets that ”contain more elements” (have greater cardinality) than others.

4.2 Diagonalization: Not all infinite sets are equal!

Theorem 4.2: The set of real numbers R is not countable.

The proof of this theorem is an easy corollary of the following

Lemma 4.1: (Cantor’s Diagonal Argument) The set]0; 1[is not countable.

Proof: Here we will use two milestones of the proof techniques in Mathematics and mathematical reasoning in
general: proof by contradiction (Reductio ad absurdum) and the diagonalisation method.
First of all we want to mention that any irrational number can be expressed as a decimal fraction, e.g. 327,12345679875645345...
or 0,12128494576... etc. (formally, this fact should be proved too).

Assume that all the reals in]0; 1[are countable (this is the first and most important step in this proof technique:
assumption of the contrary to construct a contradiction by logical reasoning). Hence any real number will be
represented as a member 0, di,1di,2di,3...di,n... of an infinite list:

CHAPTER 4. SETS AND THEIR CARDINALITY 37

General representation Example

D1 = 0, d1,1d1,2d1,3...d1,n... D1 = 0, 1298736178...
D2 = 0, d2,1d2,2d2,3...d2,n... D2 = 0, 8913467255...
D3 = 0, d3,1d3,2d3,3...d3,n... D3 = 0, 9871367513...
...
Dn = 0, dn,1dn,2dn,3...dn,n... Dn = 0, 8734368646...
...

Here each di,j denotes the j ’th digit after the decimal point of the i ’th number in the list. In particular, dn,n is
the n ’th digit after the decimal point of the n ’th number in the list. Note that these elements are on the diagonal
of this list (in our example the diagonal digits are 1, 9, 7 etc.)

If we construct a real number C that can not be a member of any such list, this will be a contradictin since the
assumption was that a list exists that contains any real number in]0; 1[. In other words, we should prove that to
any such list a real number exist that can not be listed there.
Given any such list (that is complete meaning that it contains all the rationals in]0 : 1[), we construct C =
0, [d1,1+1][d2,2+1][d3,3+1]...[dn,n+1]..., it should be different from the first number in the given list because they
have different first digits after the decimal point; It should also be different from the second number because they
differ in the second digit and so on for all the numbers in the list (note that here 9+1 ≡ 0). For our example above
we obtain C = 0, 208...7....
Thus we have shown that no such list can be complete that leads to the contradiction to the initial assumption that
such a complete list with all the rationals in]0; 1[can exist.

Hence such a complete list can not exist. Q.E.D.

We started our argumentation by the assumption of the counterargument (the negation of the term to be proved).
With a chain of logical decisions we constructed a contradiction: a term that contradicts a known fact (in this case
the assumption itself). Since there was no mistake in the logical argumentations (that can be easily checked), and
the main axiom of logic says that from truth there can be deduced only truce or, in other words, if we deduce a
false term by logical reasoning that contain no errors, the starting assumption should be false.
This proof technique is called proof by contradiction (reductio ad absurdum).
In our case we assumed that all the reals in]0; 1[can be counted in a list (no real number in]0; 1[is missed there)
and showed that there should exist a real that is not listed there.

Furthermore, we have used a proof technique called diagonalisation: we gave the pattern of all possible lists
and constructed a decimal fraction by changing the diagonal elements thus constructing a contradiction.

The above theorem proves an extremely important fact: Not all infinite sets are countable (bijective). To say it
nonformally, some infinite sets have ”more” elements than others.
This fact is very hard to realise. Even some great thinkers of modern times (among them the founder of the 20th
century philosophy Ludwig Wittgenstein) refused to recognise this fact and searched a mistake in the argumentation.
Since ancient times there was a vision of unique emptiness and a unique infinity, and the realising a different fact
was very difficult.

Due to the diversity of infinity we will deduce very important facts in the theory of algorithms.

Exercise 4.4: Apply the diagonalization method to prove the uncountability of Q+. Find a mistake in the argumen-
tation.

Exercise 4.5: In the proof above, where did we use the fact that the representation of the reals is infinite?

A natural question is, if the representation of reals is infinite, how can we compute them by algorithms? The answer
is: They are not computable!
However, we can compute them by any approximation (as exactly as we like): we can write an algorithm that
computes any real number so that as many digits as needed after the decimal point will be correct.

As an example consider the recursive formula to compute
√
2 = 1, 41421356237310...:

CHAPTER 4. SETS AND THEIR CARDINALITY 38

1. a0 = n > 0;

2. an+1 =
an+

2
an

2 = an

2 + 1
an

.

Note that the first element of the recursion can be any natural number. The special choice does not affect the
result, however taking different starting values could affect the number of computational steps.

Starting with a0 = 1, we obtain:

a1=0,5+1=1,5;

a2≈1,41667..;

a3≈1,414215...;

a4≈1,4142135623746...

Exercise 4.6: Compute the numbers starting with a0 = 3. How many steps will be needed to compute the correct
result up to eight digits after the decimal point?

Exercise 4.7: Consider the computations starting with a0 = 1. How many steps will be needed to compute the
correct answer up to 15, 17, 20, 23, 25, 27, 30 digits after the decimal point?
In general, (approximately) how many steps are needed to compute the correct result up to k ∈ N digits after the
decimal point?

Exercise 4.8: Prove that
√
2 ̸∈ Q. Hint: Assume the contrary: There exist a, b ∈ N so that a

b is irreducible, a
b =

√
2

and construct a contradiction.

Given a finite set A, we can construct a set of all its subsets 2A. For example, if A = {a1, a2, a3}, the set of its all
subsets will be
{∅, {a1}, {a2}, {a3}, {a1, a2}, {a1, a3}, {a2, a3}, {a1, a2, a3}}. In general, the set of all subset of an n element set
contains 2n elements.
Obviously, no bijection exists between a finite set and the set of all its subsets. As can be proved by diagonalization,
such a bijection does not exist for infinite sets.
Hence, |A| < |2A| meaning that for each set there exists a ”mightier” set (with ”more elements”, or greater
cardinality).

Exercise 4.9: Prove that for any set A, |A| < |2A|.

4.3 Summary

In this chapter, we introduced the so called bijective mappings between sets and proved that not all infinite sets
are ”equal”: some infinite sets have ”more elements” than others. To be precise, infinite sets can have different
cardinalities: there does not exist the pairings between them so that no elements of any set are left over.
There exist finite, countable and uncountable sets, and for any set there exist a set with greater cardinality (”more
elements”).
This very counterintuitive fact will be applied later to prove that there exist unsolvable problems. And even more:
There exist ”much more” unsolvable problems than solvable ones.

Chapter 5

Encoding the Data: Alphabets and
Languages

5.1 Encoding the Data

Consider the words ”alphabet” and ”language”. These are words of the English language having some meaning
(semantics). Another example is ”ghwpy” – it is not a word of in English (and, maybe in no language), but is
constructed using Latin letters. This is the main difference between a ”word of a language” and ”a word constructed
by an alphabet”.
”A word constructed by an alphabet” is just any sequence of the letters of that alphabet that could have or not
have some meaning (semantics), whereas ”a word of a language” must have a meaning in the langauage (it is a
selection from the set of all possible words).
A word can be finite or infinite. In our everyday life we deal with finite words.
Finite words have finite length defined by the number of elements it is constructed of.
For example, | alphabet | = 8 and | languages | = 9. The length of a given word w = w1w2...wn (the number of its
elements) is denoted by |w| = n. w(i) is its i ’th element. So, for example, ”alphabet(4) = ”h” and ”electrification(7)
= ”i”.
Given two words w1 and w2, its concatenation is w1 ◦ w2 = w1w2 (these words combined). For example,
”foot”◦”ball=”football”. If w = u ◦ v, then u is the prefix of w and v is the suffix of w: u ≺ w and v ≻ w.
The n-element prefix of w is denoted by w[n], and its m-element suffix is denoted by w{m} (not to be confused
with w(n)!!!).

Exercise 5.1: Explain the meaning of the following: |w|, w[|w|], w(|w|), w[|w|−1], w[0], w{|w|}, w{|w|}, w{|w|−1},
w{0}.

Exercise 5.2: Explain the meaning of the following: |w|, w[|w|], w(|w|), w[|w|−2], w[0], w{|w|}, w{|w|}, w{|w|−3},
w{0}, where w =”electrofication”

Definition 5.1: Given any alphabet Σ = {a1, a2, ..., an}, Σn denotes the set of all words that are built by the elements
of Σ and have length n:

Σn = {w | w(i) ∈ Σ, (1 ≤ i ≤ n), |w| = n}.

Σ∗ is the set of all finite words on Σ:

Σ∗ =

∞⋃
i=1

Σi = Σ1 ∪ Σ2 ∪ · · · ∪ Σn ∪ · · · .

Besides the finite and infinite words there exists an empty word ϵ, that has no elements at all: |ϵ| = 0, ϵ ≺ w
and w ◦ ϵ = ϵ ◦ w = w for any word w.

All the above can be stated in

Definition 5.2: Any (finite) set Σ can be considered as an alphabet. A word based on the alphabet is a sequence of
its elements. Given a word w on Σ, its length |w| is the number of its elements. If |w| = 0, it is called the empty
word and is denoted by ϵ.
If |w| = ∞, it is called an infinite word.

39

CHAPTER 5. ENCODING THE DATA: ALPHABETS AND LANGUAGES 40

Given two words w and v (w finite), w ◦ v = wv is called the concatenation of the two words.
w is called prefix of w, (u ≺ w) if ∃v such that w = u ◦ v.
u is suffix of w, (u ≻ w), if ∃v so that w = v ◦u. For any word w, w(n) is its n ’th element, w[n] its prefix of length
n, and wn its suffix of length n.
For a given alphabet Σ, Σn = {w | |w| = n} and Σ∗ = {w | |w| < ∞}.

Exercise 5.3: Given two words w1 ∈ A∗ and w2 ∈ B∗, with A and B alphabets. What is the alphabet of w1 ◦ w2 ?

Exercise 5.4: Given the words w1 = 00134, w2 = 65430, w3 = 001, w4 = 346, is it true that w3 ◦ w4 = w1 ◦ w4[6]?
Check your answer.

A word w ∈ A∗ contains v ∈ A∗ if ∃w1, w2 ∈ A∗ and w = w1 ◦ v ◦ w2 (w1 or w2 could be empty).
In this case v is said to be a subword of w. For example, for the word ”modification” the subwords are ”modification”,
dific”, ”modi” to list a few.
Besides, ”modi” is its prefix and ”cation” its suffix.
On the contrary, ”modication” is not its subword, however it is combined by two subwords.

Exercise 5.5: Which of the following is true: w ∈ Σ|w|, w ∈ Σ|w|−1, w[k] ∈ Σk if w is built on the alphabet Σ and
k ∈ N? Prove your answer.

Words can be constructed on any (finite) alphabet (set). Given the base-10 (or decimal) alphabetA = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
we can represent any natural number with it. This representation is called the decimal or base-10 system because
these 10 digits are used to describe any natural number.
Obviously, there are infinitely many (finite) alphabets. If Σ1 and Σ2 are different alphabets, there exists a bijective
mapping Σ∗

1 → Σ∗
2 meaning that the choice of the alphabet is irrelevant: we can translate one set of words to the

other one-by-one and onto.
For example, english words can be coded in decimal as follows:
First of all, we should code the latin alphabet in decimal:

a → 00 b → 01 c → 02 d → 03 e → 04 f → 05 g → 06 h → 07
i → 08 j → 09 k → 10 l → 11 m → 12 n → 13 o → 14 p → 15
q → 16 r → 17 s → 18 t → 19 u → 20 v → 21 w → 22 x → 23
y → 24 z→ 25

As a result, we can substitute each element of an english word by an according tuple. For example, ”concept” will
be coded as ”02141302041519”.

Exercise 5.6: What will be the code of ”electrofication”? Which word corresponds to the code ”0304031403081306”?

As seen from the previous exercise, coding and decoding is easy if we know which code corresponds to which
character. It is a little bit trickier if we do not know the correspondence, especially if the correspondence is taken
randomly as shown in the next table.

a → 39 b → 27 c → 99 d → 03 e → 38 f → 21 g → 76 h → 78
i→ 87 j → 90 k → 10 l → 11 m → 13 n → 31 o → 37 p → 65
q → 16 r → 17 s → 18 t → 19 u → 47 v → 51 w → 66 x → 08
y → 24 z → 25

If the letter-number correspondence is known, we can build a function f : Σ → A×A (here Σ is any alphabet and
A = {0, 1, 2, ..., 9}). In the last example, f(a) = 39, f(b) = 27, f(l) = 11, f(s) = 18 etc.
Any w ∈ Σn can be coded by the following algorithm:

Algorithm 5.1: P (w)
Input: w ∈ Σ|w|

1 r if(w = ϵ) { End of Algorithm }
2 else
3 { return(P (w[|w| − 1]) ◦ f(w(|w|))) }

(f is defined by the above table).

CHAPTER 5. ENCODING THE DATA: ALPHABETS AND LANGUAGES 41

Exercise 5.7: Describe in detail each computational step of P (”force”).

Given an english word coded using the above method, it will be tricky to encode it (restore the original word)
without knowing the relation table.

It is worth to mention that there exist efficient methods to decode the words coded by the upper method: If we
know that an English text is coded, we look up for the most frequent tuples. Since we know that in English texts
the most frequent letter is ”e”, then ”a”, followed by ”r”, then ”i”, ”o” etc. we can assume that the most frequent
code corresponds to ”e”, the second to ”a” etc. experimenting with some patterns we can obtain real English text.
One of the branches of computer science and mathematics – cryptography – deals with the methods of encoding
and decoding information.

Definition 5.3: For a given alphabet Σ, any subset L ⊂ Σ∗ is called a language on the alphabet Σ.

Alphabets and languages play a central role in Informatics. Any problem can be coded in some language and the
solution of this problem is equivalent to the problem of finding some specific words in that language.
In computer science a crucial role plays the so called ”binary” alphabet B = {0, 1}. Any information (as complex
as desired) can be coded using only two symbols.
Given any natural number n ∈ N, we can rewrite it in binary using the following method:

Algorithm 5.2: Binary
Input: n ∈ N
1 r if(n = 0)
2 { return(0) }
3 else if(n = 1)
4 { return(1) }
5 else
6 { Binary(⌊n

2 ⌋) (repeat the algorithm for input ⌊n
2 ⌋) return the remainder after the division n

2
(if(n is odd) return(1) ;
(if(n is even) return(0) ; }

Note that this algorithm returns the binary digits (bits) of the appropriate representation one-by-one.

Exercise 5.8: Consider the following algorithm:

Algorithm 5.3: Binary
Input: n ∈ N
1 r if(n = 0) { return(0) }
2 else if(n = 1) { return(1) }
3 else Binary(⌊n

2 ⌋) (repeat the algorithm for input ⌊n
2 ⌋) return the remainder after the division n

2
(if(n is odd) return(1) ;
(if(n is even) return(0) ; }

What is its output?

Exercise 5.9: Write the following numbers in binary: 13, 127, 17, 8, 16, 0.

Given any binary number, e.i. a = 1101102, its individual digits (bits) can be enumerated from right to left starting
with zero:a = a5a4a3a2a1a0. Here a5 = 1, a4 = 1, a3 = 0, a2 = 1, a1 = 1, a0 = 0. Of course, we could enumerate
them from left to rigt, or beginning from one etc., but the above method has been established as standard.

Similarly we could encode any number with any alphabet.
If a number is encoded in a k-digit alphabet, it is said to be written in k-base:

Exercise 5.10: Consider the numbers given in the previous exercise. Write them in octadecimal (base-8), hexadecimal
(base-16) and binary systems. Hint: for hexadecimal use the alphabet {0, 1, ..., 9, A,B, ..., F}.

Exercise 5.11: Write an algorithm that converts a binary number into decimal.

CHAPTER 5. ENCODING THE DATA: ALPHABETS AND LANGUAGES 42

Algorithm 5.4: k-ary
Input: n ∈ N
1 r if(n < k) { return(k) }
2 else
3 {
4 Binary(⌊n

k ⌋) (repeat this process for input ⌊n
k ⌋)

5 return the remainder of n
k

6 }

5.2 Simulating Infinity with Finite Structures: Modular Arithmetics

One of the most natural procedures nowadays in our life is reading a clock. Assumed there are 24 hours in
day-and-night, after 1 o’clock there will be 2, then 3, 4, 5,..., 23 and after it 0 (same as 24). Hence we have
0 + 1 = 1, 1 + 1 = 2, 2 + 1 = 3, 3 + 1 = 4, ..., 23 + 1 = 0 and the cycle starts again.
So we have the following rule: 0 + 1 = 1, 1 + 2 = 3, ..., 22 + 1 = 23, 23 + 1 = 0 and we repeat the cycle.
Since 24 numbers are used in total (0, 1, ..., 23), it is said that the addition is defined modulo 24. In this case
12 + 7mod 24 = 19, 23 + 1mod 24 = 0, 12 + 15mod 24 = 3, 503 + 20167mod 24 = 6. The general principle is: We
add two numbers as usual, divide the result by 24 and take the remainder.
Similarly we can define multiplication: We multiply two numbers as usual, divide the result by 24 and take the
remainder. For example, 3 · 7mod 24 = 21, 103 · 17mod 24 = 23.

Exercise 5.12: Calculate 13 + 17mod 24 , 9 + 23mod 24 , 23 · 5mod 24 , 5 · 17mod 24.

In our finite set Z24 = {0, 1, 2, 3, , 4..., 23} we have a so called the identity element under addition 0 that leaves any
number unchanged after addition: a + 0mod 24 = a. Hence we can state the following question: Given a number
a ∈ Z24, does there exist a number b ∈ Z24 so that a+ b mod 24 = 0? In if it exists, b is called the inverse element
of a regarding addition. As usual, the inverse element regarding addition is denoted by −a.
In fact, we can find an inverse regarding addition to any given number a ∈ Zk = {0, 1, ..., k − 1}. For example,
11+13mod 24 = 0, 23+1mod 24 = 0, 7+17mod 24 = 0 etc. In general, −a ∈ Zk can be calculated by (k+1)−a.
Similarly we can define the identity element under multiplication denoted by 1: for any a ∈ Zk, a · 1 = a.
The inverse to an element a regarding multiplication would be a−1 such that a·a−1 = 1. For example, 13·3mod 24 =
1 so that 13 and 3 are inverse to each other regarding multiplication mod 24.
By a simple check we can see that 6 ∈ Z24 has no inverse regarding multiplication mod 24. This example shows an
important fact: Some elements can have no inverses regarding multiplication.

Exercise 5.13: Write down all the numbers in Z24 that have an inverse regarding multiplication. Compare them
with the numbers that do not have the inverses. Is there any regularity in the sets of these numbers?

A deep result of algebra states that in modular arithmetics (arithmetics in the set Zk modulo k), an element a ∈ Zk

has an inverse regarding multiplication iff a and k are relatively prime.

An interesting fact is that, in modular arithmetics, the inverses of some elements are the elements themselves. For
example, 1 · 1mod 24 = 1 and 7 · 7mod 24 = 1.

Exercise 5.14: Calculate (−13)mod 24, (−1)mod 24, 13−1 mod 24, −13mod 24, 17−1mod 24.

We can also define the arithmetical operations modulo any m ∈ N: For any a, b ∈ Zm, calculate c = a+b or d = a ·b,
divide the result by m and compute the residue.

Exercise 5.15: Compute (−13)mod 27, (−1)mod 9, 13−1 mod 27, −13mod 31, 17−1mod 41, 13 + 17mod 34 , 9 +
23mod 4 , 23 · 5mod 32 , 5 · 17mod 47.

An important question can arise quite naturally: What use has modular arithmetics? This question was stated
long time ago and for some period of time the investigation of modular arithmetics and final structures in general
(such as finite rings, fields, groups etc.) were regarded as purely theoretical without any interesting application.
After the deep results from the 19th century, mostly based on the results of Galois concerning the non-solvability of
the equations with the degree higher that four in radicals, or the solution of the ancient Greek problems mentioned
above, the applications of finite structure arithmetics seemed to be impossible. But after the development of
computers in the 20st century it became actual again.

CHAPTER 5. ENCODING THE DATA: ALPHABETS AND LANGUAGES 43

Since the memory of any computer is limited, it is impossible to represent infinite structures (such as the set of
natural numbers, to say nothing about the reals), it is impossible to perform absolutely reliable computations
without losing any information.
One way to solve this problem would be the use of arithmetics on finite structures to mimic the arithmetics on
infinite structures: Take a finite ring with a unit (a structure with addition and multiplication as well as a unit
regarding multiplication and one regarding addition), such as Zk (here k is prime) and perform computations
modulo k.
In real life we can choose k so large that the computations in Zk are satisfiable in most cases, so that we can mimic
the computations in N without the loss of information.
Of course, modular arithmetics can not give us the right answer: in some cases we can deal with large numbers
that no longer fit in the finite set Zk, but in most practical cases such divergencies can not greatly influence correct
computational results.
Besides this, there exist methods (like the Chinese Remainder theorem) due to which one can obtain computational
results in a large ring combining the results from several smaller rings.
These are problems of computational Algebra we will deal with in later courses.

5.3 Elements of the Binary Arithmetics

Consider the binary numbers A = (a3a2a1a0) = (1101) and B = (b3b2b1b0) = (1110). Like the numbers written in
decimal, we can add them by the school method:

0 1 1 0 1 13
0 1 1 1 0 14
x4 x3 x2 x1 x0

First of all, the ”lower” (rightmost) bit must be added: x0 = 1 ⊕ 0 = 1 (here, ⊕ is the binary addition – addition
modulo 2).
Like decimal numbers, we have ”carry bit” 0 or 1 that should be added with higher bits. In our example we have
c1 = 0 since we have not two 1 in the first bits. To compute the second bit of the sum we have x1 = 0⊕ 1⊕ c1 =
0⊕ 1⊕ 0 = 1 (sum up the actual bits and the previous carry bit). In this step, the carry bit is c2 = 0, since there
were less than two 1s in the three summands of x1. After this, we calculate x3 = 1 ⊕ 1 ⊕ d2 = 1 ⊕ 1 ⊕ 0 = 0, and
the carry bit is c3 = 1, because we have tho 1s in the three summands of x2.
Compute x3 = 1⊕ 1⊕ c3 = 1⊕ 1⊕ 1 = 1 and c4 = 1 (same considerations).
In the last step, x4 = 0⊕ 0⊕ c4 = 0⊕ 0⊕ 1 = 1 and we obtain the final result:

0 1 1 0 1 13
0 1 1 1 0 14
1 1 0 1 1 27

Exercise 5.16: Describe in details the computational process (the results and carrybits in every step) of the following
sums: (10010101)2 + (10010101)2, (11110101)2 + (00010101)2 and (10010001) +2 (10011101)2.

In general, we have the following algorithm:

Algorithm 5.5: Addition of Binary Numbers

1: procedure SumBinary((an, ..., a0), (bn, ..., b0)) c0 = 0;
2: for (i = 0, i ≤ n, i++)
3: {
4: xi = ai ⊕ bi ⊕ ci;
5: if (there are two or three 1s in the variables ai, bi and ci)
6: then ci+1 = 1;
7: else ci+1 = 0;
8: }
9: xn+1 = cn+1;

Exercise 5.17: Explain why is it necessary to compute xn+1 but not xn+2 or xn+3?

Exercise 5.18: Prove the correctness of the above algorithm and compute the number of its steps.

CHAPTER 5. ENCODING THE DATA: ALPHABETS AND LANGUAGES 44

Exercise 5.19: Following the pattern of addition, write an algorithm for the multiplication of two n-bit numbers.
Prove its correctness and compute the number of its steps.

If we are given n bit numbers and no longer numbers can be represented, modulo 2n arithmetics will be constructed
over the set Z2n , since we can represent 2n different numbers with n bitis.
Consider an 8-bitnumber 111111112 = 25510. Obviously, 111111112 + 1mod 28 = 0, so −255mod 256 = 1.

Exercise 5.20: Prove the following statement: given an n-bit binary number (111...1)2, its inverse in respect of
addition is 1.

Now consider another 8-bit binary number x = 11010010. How can we calculate its inverse regarding addition?
According to the above considerations, we should calculate a number y with the following property: x+y = 11111111
to obtain −xmod 2n = y + 1.
It is easy to see that such y (in our example y = 00101101) Should consist of the inverted bits of the initial number
x: For any xn−1...x1x0, the corresponding ”reverse number” will be y = xn−1...x1, x0, where xi is the negation of
the xi bit: 1 = 0, 0 = 1.
Hence we have the following rule to construct the inverse regarding addition modulo 2n: Construct the reverse
number and add 1:

−(xn−1...x1x0) mod 2n = (xn−1...x1, x0) + 1.

Chapter 6

Relations and Sorting

6.1 Relations

Consider the set of the citizens of Georgia A = {w |w is a citizen of Georgia}. Obviously, there will exist subsets of
friends. If a, b ∈ A and a is a friend of b, then b is a friend of a. We can represent their friendship as (a, b). Writing
all such pairs of friends we obtain a ser R = {(a, b) | a, b ∈ A, a and b are friends}.
It is clear that the set R shows some relation between the elements of the set A that gives us some information
about its elements. Obviously, (a, b) ∈ R ⇔ (b, a) ∈ R.
Now consider the same set A and a relation
R1 = {(a, b) | a, b ∈ A, b is an ancestor of a}. Here (a, b) ∈ R1 ⇒ (b, a) /∈ R1. It gives us different information about
the relation of elements of A and has a fundamental difference from R above (to be explained later).

After these examples we want to define some fundamental notions:

Definition 6.1: For any two sets A and B, their Cartesian product is defined as A×B = {(a, b) | a ∈ A, b ∈ B}.

For example, if A = {1, 2, 3, 4} and B = {a, b, c}, then

A×B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c), (3, a), (3, b), (3, c), (4, a), (4, b), (4, c)}.

Note that the sequence in which the elements appear in the pairings are crucial for the relations: the elements of
A followed by the elements of B.

Obviously, A×A is the cartesian product of A with itself.

For example, if A = {a1, a2, a3},
A×A = {(a1, a1), (a1, a2), (a1, a3), (a2, a1), (a2, a2), (a2, a3), (a3, a1), (a3, a2), (a3, a3)}.

Exercise 6.1: given a natural number n ∈ N, construct A×A, where A = {a1, a2, ..., an}.
What is the input of this problem? What is its result?
Write an algorithm that solves the above problem.

Definition 6.2: Given any two sets A and B (often is A = B), the set R ⊂ A × B is called the relation on the sets
A and B.

The ”friendship relation” R and the ”ancestor relation” R1 defined above give us two different relationships of the
same set A.

As an example of a relation defined on the cartesian product of two different sets consider the relation of georgian
cities with their regions:
A = {Kartli, Kakheti, Racha, Imereti, Megrelia} da B = {Ozurgeti, Oni, Poti, Agara, Zugdidi, Vani, Telavi,
Gurjaani, Kutaisi}.
The relation connecting eich city to the proper region will be:

R2 = { (Kartli, Agara), (Kakheti, Telavi), (Kakheti, Gurjaani), (Racha, Oni), (Imereti, Vani),
(Imereti, Kutaisi), (Megrelia, Poti), (Megrelia, Zugdidi) }.

45

CHAPTER 6. RELATIONS AND SORTING 46

Definition 6.3: Any relation R ⊂ A×B (often A = B) can have the following properties:

• For any a1 ∈ A, a2 ∈ B, a1 ̸= a2, (a1, a2) ∈ R or (a2, a1) ∈ R (or both), then R is complete;

• If ∀a ∈ A, (a, a) ∈ R ⊂ A×B, then R is reflexive;

• If ∀a1 ∈ A, a2 ∈ B, a1 ̸= a2, (a1, a2) ∈ R ⇔ (a2, a1) ∈ R, then R is symmetric;

• If ∀a1 ∈ A, a2 ∈ B, a1 ̸= a2, (a1, a2) ∈ R ⇒ (a2, a1) /∈ R, then R is antisymmetric;

• If ∀a1, a2, a3 ∈ A, a1 ̸= a2, a3 ̸= a2, ((a1, a2) ∈ R, (a2, a3) ∈ R) ⇒ (a1, a3) ∈ R, then R is transitive.

The above (friendship) relation R is symmetric but not complete because there exist two people a, b ∈ A that are
not friends: (a, b) /∈ R.
The second (ancestors) relation R1 is transitive: if b is ancestor of a ((a, b) ∈ R1) and c is ancestor of b ((b, c) ∈ R1),
c is ancestor of a, (a, c) ∈ R1. It is also antisymmetric: (a, b) ∈ R1 ⇔ (b, a) ̸∈ R1.
The third relation R2 is antisymmetric and not complete.

Exercise 6.2: Prove that the relation R3 ⊂ N× N, R3 = {(a, b)|a ≤ b} is reflexive and complete.

Exercise 6.3: Explicitly describe the following sets:

(a) {1} × {1, 2} × {1, 2, 3};

(b) ∅ × {1, 2, 3};

(g) 2{1,2} that is the set of all subsets of {1, 2};

(d) 2{1,2} × {1, 2}.

It is convenient to depict not too large relations as small circles connected with arrows: Given set A and a relation
R defined on it, (a, b) ∈ R, the elements a and b can be represented as small circuits connected by an arrow from a
to b (fig. 6.1 (a)).
If (b, b) ∈ R, the element b is represented by a small circle connected by an arrow with itself (fig. 6.1 (b)).
For A = {a, b, c, d, e}, the relation
R = {(a, a), (a, b), (b, b), (b, a)(c, a), (c, d), (d, e), (e, b), (e, c), (e, d)} is represented in fig. 6.1 (g).

Figure 6.1: Depiction of relations

Definition 6.4: A reflexive, symmetric and transitive relation is called ”equivalence” relation.
Note that an equivalence relation classifies and unites ”similar” elements into different subsets.

For example, if we are given a set A of living organisms, then R′ = {(a, b) | a da b are both mammals} is an
equivalence relation.

Exercise 6.4: Prove that the above relation R′ is reflexive, symmetric and transitive.

As mentioned before, the equivalence relations divides a given set into so called ”equivalence classes” – in subsets
that contain elements that are similar in certain way.

CHAPTER 6. RELATIONS AND SORTING 47

If an equivalence relation R is defined on a set A ̸= ∅, it defines such subsets Bα ⊂ A that Bα = {a, b ∈ A | (a, b) ∈ R}
(each subset contains only such elements are ”similar” by the definition of R).

Example: The relation R = {(a, b)| a and b are both even or a and b are both odd} divides the set of natural numbers
N into two disjoint classes (sets) of odd and even numbers: N1 = {ai|ai is odd, i ∈ N}, N2 = {ai|ai is even, i ∈ N}.

Given a set A = {0, 1, 2, 3, 4, 5, 6, 7}, we can depict the relation R = {(a, b) ∈ A × A | a and b are even or a and b
are odd} as

Figure 6.2: Division of a set in two independent classes

Obviously, the relation R divides A into two independent classes (subsets).

The equivalence of the elements depends on the relation: two different relations can determine differend equivalence
classes.
Example: Given the set N, the relation R′ = {(a, b) | a and b are both divisible by 3 or either a or b are not divisible
by 3}.

Exercise 6.5: Depict the relation R′.

The equivalence classes of a set A defined by an equivalence relation R are denoted as [a] = {b | (a, b) ∈ R}.
If A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and R′ = {(a, b) | a and b are both divisible by 3 or either a or b are not divisible by
3}, [6] = {0, 3, 6, 9} da [2] = {1, 2, 4, 5, 7, 8} (note that [6] = [3] = [0] = [9] and [1] = [2] = [4] = [5] = [7] = [8]).

Exercise 6.6:Give an example of an equivalence relation that divides the set of natural numbers into three equivalence
classes.

Now consider two natural numbers 307 and 509 denoted in a decimal alphabet. As we all know, the relation between
them is 307 < 509. This relation should be either defined somewhere or be a logical consequence of some basic
definitions (alternatively we could define 509 < 307).
As a basic definition we have the relations 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 that are not obvious, it is just a
common convention.
So we have the following relation on the set A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}:

R = {
(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9)
(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)
(2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9)
(3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9)
(4, 5), (4, 6), (4, 7), (4, 8), (4, 9)
(5, 6), (5, 7), (5, 8), (5, 9)
(6, 7), (6, 8), (6, 9)
(7, 8), (7, 9)
(8, 9)

}

It determines the so called order and gives the rule how to sort the elements in ascending order.

Definition 6.5: A complete, antisymmetric and transitive relation is called total order. An incomplete, antisymmetric
and transitive relation is called partial order.

Exercise 6.7: Prove that the relation R above is a total order.

Exercise 6.8: Give an example of a partial order on the above set A.

CHAPTER 6. RELATIONS AND SORTING 48

If (a, b) ∈ R and R is order then we can write a < b.

Given an order of the above set A, it is easy to order all the elements of A∗ due to the following algorithm:

Algorithm 6.1: C(w, v)
Input: w = (w1, w2, ..., wn), v = (v1, v2, ..., vm) ∈ A∗

1 If |w| = |v| = 0 then w = v end of algorithm
2 If w(1) < v(1) then (w, v) ∈ R (or, equivalently, w < v) end of algorithm
3 If v(1) < w(1) then (v, w) ∈ R (or, equivalently, v < w) end of algorithm
4 Execute C(w{|w| − 1}, v{|v| − 1}) (the same algorithms for the suffixes of the words w and v).

Note that ϵ < a,∀a ̸= ϵ ∈ A.

Exercise 6.9: Explain the meaning of the mathematical notations in the previous algorithm: ”If w(|w|) < v(|v|)
then...” and ”C(w{|w| − 1}, v{|v| − 1})”.

Exercise 6.10: Prove the correctness of the above algorithm. Count the number of steps for |w| = |v| and |w| ≠ |v|.

Exercise 6.11: Write explicitly the complete order relation R on the above set A that sorts the elements as 1 ≤ 3 ≤
2 ≤ 5 ≤ 8 ≤ 4 ≤ 0 ≤ 9 ≤ 7 ≤ 6.

Exercise 6.12: Give two examples of partial order relations on the set A. Can R = ∅ be its partial order?

Exercise 6.13: Is the relation R = ∅ defined on any set X transitive?

Exercise 6.14: Can there exist a relation R ̸= ∅ defined on a set X that is both symmetric and antisymmetric?

Exercise 6.15: Prove that for any partial order relations R1 and R2 defined on some set X, R1∩R2 is a partial order
defined on the same set.

Exercise 6.16: Consider a set S whose elements are sets. Prove that the relation RS = {(A,B) |A,B ∈ S,A ⊆ B}
is a partial order.

Exercise 6.17: Consider a set S = 2{1,2,3} that is a set of all subsets of {1, 2, 3}.
Explicitly write its elements and depict the relation RS as defined in the previous exercise.
Write its minimal and maximal elements (such that (min, b) ∈ RS , ∀b ∈ S and (b,max) ∈ RS , ∀b ∈ S).

Exercise 6.18: Formally define the minimal and maximal elements of an ordered set.
Can such elements always exist?

Now consider the relation given in fig. 6.3 (a).

Exercise 6.19: Show that the relation given in fig. 6.3 (a) is neither reflexive nor transitive.

Figure 6.3: Reflexive and transitive closure of a relation

CHAPTER 6. RELATIONS AND SORTING 49

Adding appropriate new pairs of elements (or arrows in the diagrams) one can obtain a transitive relation (fig. 6.3
(b). On the other hand, adding the pairs (a, a) for each element a the relation becomes reflexive (fig. 6.3 (g)).
The process of adding pairs of elements to the relation set is called the reflexive and transitive closure and can
be applied to any relation.

Definition 6.6: For any relation R, its reflexive and transitive closure R∗ is called a relation such that R ⊂ R∗ and
the number of elements of R∗ is minimal (R∗ is obtained form R adding minimal number of pairs).

Exercise 6.20: Write an algorithm that constructs a reflexive and transitive closure from any relation R defined on
a set A (constructs an appropriate set). Prove its correctness and count the number of steps if |A| = n.

6.2 Applications of sorting and equivalences:
Searching in sets and residue classes

Total and partial orderings play a central role in computer science and our everyday life: many algorithms can be
performed efficiently on sorted sets.

As an example consider the total ordering defined on the lathin alphabet Q: a < b < c < d < · · · < y < z.
If we succeed to sort all english words based on the sorting principle of Q by defining some sorting on the set Q∗,
searching any word w in any english dictionary will be much faster: first, we flip the book in the middle and consider
the first word v there. If w = v, we are done. If w < v, repeat the same operation recursively with the first (left)
half, or the right half (if w > v) of the pages considered.

Exercise 6.21: Write an algorithm that, for any two words w, v ∈ Q∗, defines w = v or w < v or v < w.
Remark: Use the analogy to the number comparison problem.

Exercise 6.22: Proof the correctness of the algorithm from the previous exercise and count the number of steps if
|w| = n da |v| = m.

Given any alphabet A and an ordered set of its words S = {u1, u2, ..., un ∈ A∗}, the following algorithm searches
any given word w ∈ A∗ in S:

Algorithm 6.2: Algorithm L(S,w)
lllInput: A set of words S = {u1, u2, ..., un ∈ A∗} and a word w
Output: Index i such that ui ∈ S, ui = w (if it exists)

1: procedure L(S,w)
2: If S = ∅, print(w ̸∈ S); End of the algorithm

3: If u⌊ |S|
2 ⌋ = w, print(⌊ |S|

2 ⌋-th element); End of the algorithm

4: If u⌊ |S|
2 ⌋ < w, execute L({u⌊ |S|

2 ⌋+1
, ..., un}, w);

5: If u⌊ |S|
2 ⌋ > w, execute L({u1, ..., u⌊ |S|

2 ⌋}, w);
6:

Algorithm 6.3: Algorithm L(S,w)
lllInput: A set of words S = {u1, u2, ..., un ∈ A∗} and a word w
Output: Index i such that ui ∈ S, ui = w (if it exists)

1: If S = ∅, print(w ̸∈ S); End of the algorithm

2: If u⌊ |S|
2 ⌋ = w, print(⌊ |S|

2 ⌋-th element); End of the algorithm

3: If u⌊ |S|
2 ⌋ < w, execute L({u⌊ |S|

2 ⌋+1
, ..., un}, w);

4: If u⌊ |S|
2 ⌋ > w, execute L({u1, ..., u⌊ |S|

2 ⌋}, w);

CHAPTER 6. RELATIONS AND SORTING 50

Exercise 6.23: Prove the correctness of the above algorithm usting mathematical induction. Count the number of
steps assuming |S| = n.

Well-ordered sets are also effective solving mathematical questions: Finding the minimum or maximum of the values
of a given function, or finding the union, intersection or difference of two sets can be performed much faster on
sorted sets.

Exercise 6.24: Given two ordered sets A and B, compute A ∩B, A ∪B and A\B (for the sake of simplicity assume
that both sets contain natural numbers). Prove its correctness and count the number of steps.

As an example of the application of equivalence relation, consider the idea of modular arithmetics discussed in
the previouse chapter: A given set of numbers Zk = {0, 1, ..., k − 2, k − 1} can be generated from the set of whole
numbers Z by dividing each z ∈ Z by k and taking its residue. In other words, two numbers z1, z2 ∈ Z are equivalent
(belong to the same equivalence class), if after division by k, their residues coinside: z1 ≡ z2 ⇔

{
z1
k } = { z2

k

}
.

0 ≡ [0] = {0, k,−k, 2k,−2k, 3k,−3k, 4k,−4k, ...},
1 ≡ [1] = {1,−1, k + 1,−(k + 1), 2k + 1,−(2k + 1), ...},

. . .

k − 2 ≡ [k − 2] = {k − 2,−(k − 2), 2k − 2,−(2k − 2), ...},
k − 1 ≡ [k − 1] = {k − 1,−(k − 1), 2k − 1,−(2k − 1), ...}

Note that theequivalence (or residue) classes are denoted by rectangle brackets, in our case it is denoted as
[z1] = [z2] =

{
x | {x

k} = { z1
k } = { z2

k }
}
.

It is a common practice in Algebra to consider the so called factor rings by dividing all elements of the ring by its
one specific element and taking the quotients that creates certain equivalence classes.

6.3 Summary

In this chapter, we introduced the notion of relations and its important examples: equivalence relation and sorting
with their applications. Dividing sets into equivalence classes is important in natural sciences (i.e. the classification
of biological objects) as well as in mathematics and computer science (residue classes), discussed in the previous
chapter as modular arithmetics. On the other hand, sorting has a wide range of applications in almost all problems:
from searching in ordered sets the classification of archeological data.

	Simpe Algorithms to Begin With
	The Wolf, the Goat and the Cabbage
	 Summary

	Recursion and Iteration
	The Boats problem
	Towers of Hanoi
	Ancient Greek Problems: Ruler-and-Compass Constructions
	Summary

	Mathematical Induction and its Applications
	Mathematical Induction
	Applications: Correctness and Complexity
	The Fibonacci Sequence
	Pascal's Triangle
	Summary

	Sets and their Cardinality
	Bijection and Countable Sets
	Diagonalization: Not all infinite sets are equal!
	Summary

	Encoding the Data: Alphabets and Languages
	Encoding the Data
	Simulating Infinity with Finite Structures: Modular Arithmetics
	Elements of the Binary Arithmetics

	Relations and Sorting
	Relations
	Applications of sorting and equivalences: Searching in sets and residue classes
	Summary

