
Algorithms for Energy Saving�

Susanne Albers��

Department of Computer Science, University of Freiburg
Georges Koehler Allee 79, 79110 Freiburg, Germany

salbers@informatik.uni-freiburg.de

Abstract. Energy has become a scarce and expensive resource. There
is a growing awareness in society that energy saving is a critical issue.
This paper surveys algorithmic solutions to reduce energy consumption
in computing environments. We focus on the system and device level.
More specifically, we study power-down mechanisms as well as dynamic
speed scaling techniques in modern microprocessors.

Keywords: Dynamic speed scaling, power-down mechanisms, schedul-
ing, competitive analysis, probabilistic analysis, approximation
algorithms.

1 Introduction

With increasing CPU clock speeds and higher levels of integration in processors,
memories and controllers, power consumption has become a major concern in
computer system design over the past years. Power dissipation is critical in bat-
tery operated mobile computing devices that have proliferated in recent years. In
these devices, obviously, the amount of available energy is severely limited. More-
over, power consumption is a major concern in desktop computers and servers.
Electricity costs impose a substantial strain on the budget of data and comput-
ing centers, where servers and, in particular, CPUs account for 50–60% of the
energy consumption. In fact, Google engineers, maintaining thousands of servers,
recently warned that if power consumption continues to grow, power costs can
easily overtake hardware costs by a large margin [11]. In addition to cost, energy
dissipation causes thermal problems. Most of the consumed energy is converted
into heat, resulting in wear and reduced reliability of hardware components.

For these reasons, there has recently been considerable research interest in
the design and analysis of energy-efficient algorithms that reduce the energy
consumption while minimizing compromise to service. This survey focuses on
energy saving mechanisms on the system and device level. In this context, there
are basically two techniques to save energy.
� An extended and modified version of this survey, aiming at a different audience, will

appear in the Communications of the ACM.
�� Work supported by a Gottfried Wilhelm Leibniz Award of the German Research

Foundation.

S. Albers, H. Alt, and S. Näher (Eds.): Festschrift Mehlhorn, LNCS 5760, pp. 173–186, 2009.
© Springer-Verlag Berlin Heidelberg 2009

174 S. Albers

(1) Power-down mechanisms : When a system is idle, it can be transitioned into
low-power standby or sleep states. This technique is well-known and widely
used to save energy. One has to find out when to shut down a system, taking
into account that a transition back to the active mode requires extra energy.

(2) Speed scaling: Microprocessors currently sold by chip makers such as AMD
and Intel are able to operate at variable speed. The higher the speed, the
higher the power consumption is. The goal is to save energy by utilizing
the full speed/frequency spectrum of a processor and applying low speeds
whenever possible.

The power management problems described above are online problems in that
a system is usually not aware of future events. A power-down mechanism, during
an idle period, usually has no information when the period ends. Is it worthwhile
to move to a lower-power state and benefit from the reduced energy consumption,
given that the system must finally be powered up again at a cost to the active
mode? A speed scaling algorithm typically does not know future jobs. Should
lower speed levels be used at the expense of delaying the service of tasks that
may arrive in the near future?

Despite the handicap of not knowing the future, an online strategy should
achieve a provably good performance. Here we resort to competitive analysis [29],
where an online algorithm ALG is compared to an optimal offline algorithm
OPT that knows the entire future and can compute an optimal solution. On-
line algorithm ALG is called c-competitive if, for every input, the total energy
consumption of ALG is at most c times that of OPT .

In this survey we first present the most important results known for power-
down mechanisms. Then we address dynamic speed scaling algorithms.

2 Power-Down Mechanisms

Power-down mechanisms are a common technique to save energy. We encounter
them on an every day basis. The display of our desktop turns off after some
period of inactivity. Our laptop transitions to a standby or hibernate mode if it
has been idle for a while. In these settings, there usually exist idleness thresholds
that specify the length of time after which a system is powered down. From an
algorithmic point of view, we would like to design strategies that determine such
thresholds and perform well relative to the optimum.

Formally, we are given a device that always resides in one of several states.
In addition to the active state, there can be several standby and sleep modes.
These states have individual power consumption rates. The energy incurred in
transitioning the system from a higher-power to a lower-power state is usually
negligible. However, a power-up operation consumes a significant amount of en-
ergy. Over time the device experiences an alternating sequence of active and idle
periods. During active periods, the system must reside in the active mode to
perform the required tasks. During idle periods, the system may be moved to
lower-power states. An algorithm has to decide when to perform the transitions

Algorithms for Energy Saving 175

and to which states to move. The goal is to minimize the total energy consump-
tion. As the energy consumption during the active periods is fixed, assuming
that prescribed tasks have to be performed, we concentrate on energy minimiza-
tion in the idle intervals. In fact, we focus on any idle period and optimize the
energy consumption in any such time window.

In the following we will first study systems that consist of two states only.
Then we will address systems with multiple states. We stress that we consider
the minimization of energy. We ignore the delay that arises when a system is
transitioned from a lower-power to a higher-power state.

2.1 Systems with Two States

Consider a two-state system that may reside in an active state or in a sleep
state. We assume without loss of generality that the power consumption rate in
the active state is 1, i.e. the system consumes one energy unit per time unit.
The power consumption rate in the sleep mode is 0. The results we present in
the following generalize to arbitrary consumption rates. Suppose that β, β > 0,
energy units are required to transition the system from the sleep state to the
active state. The energy of transitioning from the active to the sleep state is
assumed to be 0. If this is not the case, we can simply fold the corresponding
energy into the cost of β incurred in the next power-up operation. The system
experiences an idle period whose length T is initially unknown.

We first observe that an optimal offline algorithm OPT , knowing T in advance,
is simple to formulate. If the value of T , counted in time units, is smaller than
the value of β, OPT remains in the active state throughout the idle period. If
T is at least β, OPT transitions to the sleep state right at the beginning of the
idle period and powers up to the active state at the end of the period.

The following deterministic online algorithm mimics the behavior of OPT .
Algorithm ALG-D: In an idle period, remain in the active state first. After β
time units, if the period has not ended yet, transition to the sleep state.

Theorem 1. ALG-D is 2-competitive and this is the smallest competitiveness a
deterministic online algorithm can achieve.

Proof. We first analyze ALG-D and consider two cases. If the value of T is
smaller than the value of β, then ALG-D consumes T units of energy during
the idle interval and this is in fact equal to the consumption of OPT . If T is
at least β, then ALG-D first consumes β energy units to remain in the active
state. An additional power-up cost of β is incurred at the end of the idle interval.
Hence, ALG-D ’s total cost is 2β, while OPT incurs a cost of β for the power-up
operation at the end of the idle period.

We next verify that no deterministic online algorithm can achieve a compet-
itive ratio smaller than 2. If an algorithm transitions to the sleep state after
exactly t time units, then in idle period of length t it incurs a cost of t + β while
OPT pays min{t, β} only. �

176 S. Albers

We remark that power management in two-state systems corresponds to the
famous ski-rental problem, a cornerstone problem in the theory of online algo-
rithms, see e.g. [16].

Interestingly, it is possible to beat the competitiveness of 2 using random-
ization. A randomized algorithm transitions to the sleep state according to a
probability density function p(t). The probability that the system powers down
during the first t0 time units of an idle period is

∫ t0
0 p(t)dt. Karlin et al. [20]

determined the best probability distribution.

Algorithm ALG-R: Transition to the sleep state according to the probability
density function

p(t) =
{ 1

(e−1)β et/β 0 ≤ t ≤ β

0 otherwise.

Theorem 2. [20] ALG-R achieves a competitive ratio of e
e−1 , and this is the

smallest competitive ratio a randomized strategy can achieve.

Here e ≈ 2.71 is the Eulerian number and hence e
e−1 ≈ 1.58, which is consider-

ably below the deterministic bound of 2.
From a practical point of view, it is also instructive to study stochastic settings

where the length of idle periods is governed by probability distributions. In
practice, short periods might occur more frequently. Probability distributions
can also model specific situations where either very short or very long idle periods
are more likely to occur, compared to periods of medium length. Of course, such
a probability distribution may not be known in advance but can be learned over
time.

Let Q = (q(T))0≤T<∞ be a fixed probability distribution on the length T
of idle periods. For any t ≥ 0, the deterministic algorithm ALGt that always
powers down after exactly t time units incurs an expected cost of

E[ALGt(Q)] =
∫ t

0

Tq(T)dT + (t + β)
∫ ∞

t

q(T)dT (1)

on idle periods generated according to Q. Karlin et al. [20] proposed the following
strategy to handle probabilistic settings.

Algorithm ALG-P: Given a fixed Q, let A∗
Q be the deterministic algorithm

ALGt that minimizes (1).

Theorem 3. [20] For any Q, the expected energy consumption of ALG-P is at
most e

e−1 times the expected optimum consumption.

2.2 Systems with Multiple States

Many modern devices do not have only one but several low-power states. Speci-
fications of such systems are given, for instance, in the Advanced Configuration
and Power Management Interface (ACPI) that establishes industry-standard in-
terfaces enabling power management and thermal management of mobile, desktop

Algorithms for Energy Saving 177

Energy

State 3
State 2State 1

State 4

T

Fig. 1. Illustration of the optimum cost in a four-state system

and server platforms. A description of the ACPI power management architecture
built into Microsoft Windows operating systems can be found at [1].

Consider a system with � states s1, . . . , s�. Let ri be the power consumption
rate of si. We number the states such that r1 > . . . > r�. Hence s1 is the active
state and s� represents the state with lowest energy consumption. Let βi be the
energy required to transition the system from si to the active state s1. We as-
sume again that transitions from higher-power to lower-power states incur 0 cost
because the corresponding energy is usually negligible. The goal is to construct
a state transition schedule minimizing the total energy consumption in an idle
period.

Irani et al. [17] presented online and offline algorithms. They first observe that
the total energy incurred by an optimal offline algorithm OPT in an idle period
of length T is given by

OPT (T) = min
1≤i≤�

{riT + βi}.

Hence, OPT chooses the state that allows for the smallest total cost consisting
of energy consumption in the period and final power-up cost. Interestingly, the
optimal cost has a simple graphical representation, see Figure 1. If we consider
all linear functions fi(t) = rit + βi, then the optimum energy consumption is
given by the lower envelope of the arrangement of lines.

We can use this lower envelope to guide an online algorithm which state to
use at any time. Let SOPT (t) denote the state used by OPT in an idle period
of total length t, i.e. SOPT (t) is the state arg min1≤i≤�{rit + βi}. The following
algorithm, proposed in [17], traverses the state sequence as suggested by the
optimum offline algorithm.

AlgorithmLower-Envelope: In an idle period, at any time t, use state SOPT (t).
Intuitively, over time, Lower-Envelope visits the states represented by the

lower envelope of the functions fi(t). If currently in state si−1, the strategy
transitions to the next state si at time ti, where ti is the solution to the equation

178 S. Albers

ri−1t+βi−1 = rit+βi. Here we assume that states whose functions do not occur
on the lower envelope, at any time, are discarded. Note that the algorithm is a
generalization of ALG-D for two-state systems.

Theorem 4. [17] Lower-Envelope is 2-competitive.

The competitiveness of 2 is the smallest ratio achievable by a deterministic online
algorithm.

Irani et al. [17] also studied the setting where the length of idle periods is
generated by a probability distribution Q = (q(T))0≤T<∞. They determined the
time ti when an online strategy should move from state si−1 to si, 2 ≤ i ≤ �.
Let ti be the time t that minimizes

∫ t

0

ri−1Tq(T)dT +
∫ ∞

t

q(T)(ri−1t + (T − t)ri + βi − βi−1)dT.

Intuitively, the above expression is the expected cost of a deterministic algorithm
ALGt that powers down after t time units, assuming that only states si−1 and
si are available.

Algorithm ALG-P(�): Change states at the transition times t2, . . . , t� defined
above.

Note that ALG-P(�) is a generalization of ALG-P for two-state systems.

Theorem 5. [17] For any fixed probability distribution Q, the expected energy
consumption of ALG-P(�) is at most e

e−1 times the expected optimum consumption.

Furthermore, Irani et al. presented an approach how to learn an initially un-
known Q. They combined the approach with ALG-P(�) and performed experi-
mental tests for an IBM mobile hard drive with four power states. It shows that
the combined scheme achieves low energy consumption close to the optimum
and usually outperforms many single-value prediction algorithms.

Augustine et al. [4] investigate generalized multi-state systems in which the
state transition energies may take arbitrary values. Let βij ≥ 0 be the energy
required to transition from si to sj , 1 ≤ i, j ≤ �. Augustine et al. demonstrate
that Lower-Envelope can be generalized and achieves a competitiveness of 3 +
2
√

2 ≈ 5.8. This ratio holds for any state system. Better bounds are possible
for specific system. Augustine et al. devise a strategy that, for a given system
S, achieves a competitive ratio of c∗ + ε, for any ε > 0, where c∗ is the best
competitiveness possible for S. Finally, the authors consider stochastic settings
and develop optimal state transition times.

3 Dynamic Speed Scaling

Many modern microprocessor can run at variable speed. Examples are the Intel
SpeedStep and the AMD processor PowerNow. High speeds result in higher
performance but also high energy consumption. Lower speeds save energy but

Algorithms for Energy Saving 179

performance degrades. If the processor runs at speed s, then the required power
is sα, where α > 1 is a constant. In practical application α is usually in the
range between 2 and 3. The well-known cube-root rule states that the power
is proportional to s3. Obviously, energy consumption is power integrated over
time. The goal is to dynamically set the speed of a processor so as to minimize
energy consumption, while still providing a desired quality of service.

Dynamic speed scaling leads to many challenging scheduling problems. At
any time a scheduler has to decide not only which job to execute but also which
speed to use. Consequently, there has been considerable research interest in the
design and analysis of efficient scheduling algorithms. This section reviews the
most important results developed over the past years. We first address scheduling
problems with hard job deadlines. Then we consider the minimization of response
times and other objectives.

In general, two scenarios are of interest. In the offline setting all jobs to be
processed are known in advance. In the online setting jobs arrive over time and
an algorithm, at any time, has to make scheduling decisions without knowledge
of any future jobs. Recall that an online algorithm ALG is c-competitive if, for
every input, the objective function value (typically the energy consumption) of
ALG is within c times the value of an optimal solution.

3.1 Scheduling with Deadlines

In a seminal paper, initiating the algorithmic study of speed scaling, Yao, Demers
and Shenker [30] investigated a scheduling problem with strict job deadlines. At
this point this framework is by far the most extensively studied algorithmic speed
scaling problem.

Consider n jobs J1, . . . , Jn that have to be processed on a variable-speed
processor. Each job Ji is specified by a release time ri, a deadline di and a
processing volume wi. The release time and the deadline mark the time interval
in which the job must be executed. The processing volume is the amount of work
that must be done to complete the job. The processing time of a job depends
on the speed. If Ji is executed at constant speed s, it takes wi/s time units to
finish the job. Preemption of jobs is allowed, i.e. the processing of a job may
be suspended and resumed later. The goal is to construct a feasible schedule
minimizing the total energy consumption.

The framework by Yao et al. assumes that there is no upper bound on the
maximum processor speed. Hence there always exists a feasible schedule satisfy-
ing all job deadlines. Furthermore, it is assumed that a continuous spectrum of
speeds is available. We will discuss later how to relax these assumptions.

Fundamental Algorithms. Yao, Demers and Shenker [30] first study the of-
fline setting and develop an algorithm for computing optimal solutions, mini-
mizing total energy consumption. The strategy is known as YDS referring to
the initials of the authors. The algorithm proceeds in series of iterations. In each
iteration, a time interval of maximum density is identified and a corresponding
partial schedule is constructed. The density ΔI of a time interval I = [t, t′] is the

180 S. Albers

total work to be completed in I divided by the length of I. More precisely, let
SI be the set of jobs Ji that must be processed in I, i.e. that satisfy [ri, di] ⊆ I.
Then

ΔI =
1
|I|

∑

Ji∈Si

wi.

Intuitively, ΔI is the minimum average speed necessary to complete all jobs that
must be scheduled in I.

Algorithm YDS repeatedly determines the interval I of maximum density. In
such an interval I the algorithm schedules the jobs of SI at speed ΔI using the
Earliest Deadline First (EDF) policy, i.e. among the available unfinished jobs
the one with the earliest deadline is executed. Then YDS removes the set SI as
well as the time interval I from the problem instance. More specifically, for any
unscheduled job Ji with di ∈ I, the new deadline time is set to di := t. For any
unscheduled Ji with ri ∈ I, the new release time is ri := t′. Time interval I is
discarded. We give a summary of the algorithm in pseudo-code.

Algorithm YDS: Initially J := {J1, . . . , Jn}. While J �= ∅, execute the follow-
ing two steps. (1) Determine the interval I of maximum density. In I process the
jobs of SI at speed ΔI according to EDF . (2) Set J := J \ SI . Remove I from
the time horizon and update the release times and deadlines of unscheduled jobs
accordingly.

Theorem 6. [30] For any job instance, YDS computes an optimal schedule
minimizing the total energy consumption.

Obviously, when identifying intervals of maximum density, YDS only has to
consider intervals whose boundaries are equal to the release times and deadlines
of the jobs. A straightforward implementation of the algorithm has a running
time of O(n3). Li et al. [25] showed that the time can be reduced to O(n2 log n).
Further improvements are possible if the job execution intervals form a tree
structure [24].

Yao et al. [30] also devised two elegant online algorithms, called Average Rate
and Optimal Available. Whenever a new job Ji arrives at time ri, its deadline
di and processing volume wi are known. For any incoming job Ji, Average Rate
considers the density δi = wi/(di − ri), which is the minimum average speed
necessary to complete the job in time if no other jobs were present. At any
time t the speed s(t) is set to the accumulated density of jobs active at time t.
A job Ji is active at time t if t ∈ [ri, di]. Available jobs are scheduled according
to the EDF policy.

Algorithm Average Rate: At any time t use a speed of s(t) =
∑

Ji:t∈[ri,di]
δi.

Available unfinished jobs are scheduled using EDF .
Yao et al. [30] analyzed Average Rate and proved an upper bound on the

competitiveness.

Theorem 7. [30] The competitive ratio of Average Rate is at most 2α−1αα, for
any α ≥ 2.

Algorithms for Energy Saving 181

Bansal et al. [5] showed that the analysis is essentially tight by providing a nearly
matching lower bound.

Theorem 8. [5] The competitive ratio of Average Rate is at least ((2−δ)α)α/2,
where δ is a function of α that approaches zero as α tends to infinity.

The second strategy Optimal Available is computationally more expensive than
Average Rate. It always computes an optimal schedule for the currently available
work load. This can be done using YDS .

Algorithm Optimal Available: Whenever a new job arrives, compute an op-
timal schedule for the currently available unfinished jobs.

Bansal, Kimbrel and Pruhs [8] gave a comprehensive analysis of the above
algorithm and proved the following result.

Theorem 9. [8] The competitive ratio of Optimal Available is exactly αα.

The above theorem implies that in terms of competitiveness, Optimal Available
is better than Average Rate. Bansal et al. [8] also presented a new online algo-
rithm, called BKP according to the initials of the authors, that approximates
the optimal speeds of YDS by considering interval densities. For times t, t1 and
t2 with t1 < t ≤ t2, let w(t, t1, t2) be the total processing volume of jobs that are
active at time t, have a release time of at least t1 and a deadline of at most t2.

Algorithm BKP: At any time t use a speed of

s(t) = max
t′>t

w(t, et− (e− 1)t′, t′)
t′ − t

.

Available unfinished jobs are processed using EDF .

Theorem 10. [8] Algorithm BKP achieves a competitive ratio of 2(α
α−1)αeα.

For large values of α, the competitiveness of BKP is better than that of Optimal
Available.

All the above online algorithms attain constant competitive ratios that depend
on α but no other other problem parameter. The dependence on α is exponential.
For small values of α, which occur in practice, the competitive ratios are reason-
ably small. A result by Bansal et al. [8] implies that the exponential dependence
on α is inherent to the problem.

Theorem 11. [8] Any randomized online algorithm has a competitiveness of at
least Ω((4/3)α).

Refinements. Bounded speed: The problem setting considered so far assumes
a continuous, unbounded spectrum of speeds. However, in practice only a finite
set of discrete speed levels s1 < s2 < . . . < sd is available. The offline algorithm
YDS can be adapted easily to handle feasible job instances, i.e. inputs for which
feasible schedules exist using the restricted set of speeds. Note that feasibility

182 S. Albers

can be checked easily by always using the maximum speed sd and scheduling
available jobs according to the EDF policy. Given a feasible job instance, the
modification of YDS is as follows. We first construct the schedule according to
YDS . For each identified interval I of maximum density we approximate the
desired speed ΔI by the two adjacent speed levels sk < ΔI < sk+1. Speed sk+1

is used first for some δ time units and sk is used for the last |I|−δ time units in I,
where δ is chosen such that the total work completed in I is equal to the original
amount of |I|ΔI . An algorithm with an improved running time of O(dn log n)
was presented by Li and Yao [26].

If the given job instance is not feasible, the situation is more delicate. In this
case it is impossible to complete all the jobs. The goal is to design algorithms that
achieve good throughput , which is the total processing volume of jobs finished by
their deadline, and at the same time optimize energy consumption. Papers [6, 13]
present algorithms that even work online. At any time the strategies maintain a
pool of jobs they intend to complete. Newly arriving jobs may be admitted to this
pool. If the pool contains too large a processing volume, jobs are expelled such
that the throughput is not diminished significantly. The algorithm by Bansal et
al. [6] is 4-competitive in terms of throughput and constant competitive with
respect to energy consumption.

Temperature minimization: High processor speeds lead to high temperatures
which impair a processor’s reliability and lifetime. Bansal et al. [8] consider the
minimization of the maximum temperature that arises during processing. They
assume that cooling follows Newton’s law, which states that the rate of cooling
of a body is proportional to the difference in temperature between the body
and the environment. Bansal et al. [8] show that algorithms YDS and BKP
have favorable properties. For any jobs sequence, the maximum temperature is
within a constant factor of the minimum possible maximum temperature, for
any cooling parameter a device may have.

Sleep states: Irani et al. [19] investigate an extended problem setting where a
variable-speed processor may be transitioned into a sleep state. In the sleep state,
the energy consumption is 0 while in the active state even at speed 0 some non-
negative amount of energy is consumed. Hence [19] combines speed scaling with
power-down mechanisms. In the standard setting without sleep state, algorithms
tend to use low speed levels subject to release time and deadline constraints. In
contrast, in the setting with sleep state it can be beneficial to speed up a job
so as to generate idle times in which the processor can be transitioned to the
sleep mode. Irani et al. [19] develop online and offline algorithms for this extended
setting. Baptiste et al. [10] and Demaine et al. [15] also study scheduling problems
where a processor may be set asleep, albeit in a setting without speed scaling.

3.2 Minimizing Response Time

A classical objective in scheduling is the minimization of response times. A user
releasing a task to a system would like to receive feedback, say the result of
a computation, as quickly as possible. User satisfaction often depends on how

Algorithms for Energy Saving 183

fast a device reacts. Unfortunately, response time minimization and energy min-
imization are contradicting objectives. To achieve fast response times a system
must usually use high processor speeds, which lead to high energy consumption.
On the other hand, to save energy low speeds should be used, which result in
high response times. Hence one has to find ways to integrate both objectives.

Consider n jobs J1, . . . , Jn that have to be scheduled on a variable-speed
processor. Each job Ji is specified by a release time ri and a processing volume
wi. When a job arrives, its processing volume is known. Preemption of jobs is
allowed. In the scheduling literature, response time is referred to as flow time.
The flow time fi of a job Ji is the length of the time interval between release
time and completion time of the job. We seek schedules minimizing the total
flow time

∑n
i=1 fi.

Limited energy: Pruhs et al. [27] assume that a fixed energy volume E is given
and the goal is to minimize the total flow time of the jobs. The authors con-
sider unit-size jobs, i.e. all jobs have the same processing volume, and study
the offline scenario where all the jobs are known in advance. Pruhs et al. [27]
show that optimal schedules can be computed in polynomial time. However, in
this framework with a limited energy volume it is hard to construct good online
algorithms. If future jobs are unknown, it is unclear how much energy to invest
for the currently available tasks.

Energy plus flow times: Albers and Fujiwara [2] proposed another approach to
integrate energy and flow time minimization. They consider a combined objective
function that simply adds the two costs. Let E denote the energy consumption
of a schedule. We wish to minimize g = E +

∑n
i=1 fi. Albers and Fujiwara

concentrate on unit-size jobs and show that optimal offline schedules can be
constructed in polynomial time using a dynamic programming approach. In fact
the algorithm can also be used to minimize the total flow time of jobs given a
fixed energy volume.

Most of [2] is concerned with the online setting where jobs arrive over time.
Albers and Fujiwara present a simple online strategy that processes jobs in
batches and achieves a constant competitive ratio. Batched processing allows
one to make scheduling decisions, which are computationally expensive, only
every once in a while. This is certainly an advantage in low-power computing
environments. Nonetheless, Albers and Fujiwara conjectured that the following
algorithm achieves a better performance with respect to the minimization of g:
At any time, if there are � active jobs, use speed α

√
�. A job is active if it has

been released but is still unfinished. This algorithm and variants thereof have
been the subject of extensive analyses [6, 7, 9, 23], not only for unit-size but also
for arbitrary size jobs. Moreover, unweighted and weighted flow times have been
considered.

The currently best result is due to Bansal et al. [7]. They modify the above
algorithm slightly by using a speed of α

√
� + 1 whenever � jobs are active. Inspired

by a paper of Lam et al. [23] they apply the Shortest Remaining Processing Time

184 S. Albers

(SRPT) policy to the available jobs. More precisely, among the active jobs, the
one with the least remaining work is scheduled.

Algorithm Job Count: At any time if there are � ≥ 1 active jobs, use speed
α
√

� + 1. If no job is available, use speed 0. Always schedule the job with the least
remaining unfinished work.

Theorem 12. [7] Algorithm Job Count is 3-competitive for arbitrary size jobs.

Further work considering the weighted flow time in objective function g can be
found in [7, 9]. Moreover, [6, 23] propose algorithms for the setting that there is
an upper bound on the maximum processor speed.

All the above results assume that when a job arrives, its processing volume is
known. Papers [14, 23] investigate the harder case that this information is not
available.

3.3 Extensions and Other Objectives

Parallel processors: The results presented so far address single-processor architec-
tures. However, energy consumption is also a major concern in multi-processor en-
vironments. Currently, relatively few results are known. Albers et al. [3] investigate
deadline-based scheduling on m identical parallel processors. The goal is to mini-
mize the total energy on all the machines. The authors first settle the complexity
of the offline problem by showing that computing optimal schedules is NP-hard,
even for unit-size jobs. Hence, unless P �= NP , optimal solutions can not be com-
puted efficiently. Albers et al. [3] then develop polynomial time offline algorithms
that achieve constant factor approximations, i.e. for any input the consumed en-
ergy is within a constant factor of the true optimum. They also devise online algo-
rithms attaining constant competitive ratios. Lam et al. [21] study deadline-based
scheduling on two speed-bounded processors. They present a strategy that is con-
stant competitive in terms of throughput maximization and energy minimization.

Bunde [12] investigates flow time minimization in multi-processor environ-
ments, given a fixed energy volume. He presents hardness results as well as ap-
proximation guarantees for unit-size jobs. Lam et al. [22] consider the objective
function of minimizing energy plus flow times. They design online algorithms
achieving constant competitive ratios.

Makespan minimization: Another basic objective function in scheduling is
makespan minimization, i.e. the minimization of the point in time when the
entire schedule ends. Bunde [12] assumes that jobs arrive over time and develops
algorithms for single and multi-processor environments. Pruhs et al. [28] con-
sider tasks having precedence constraints defined between them. They devise
algorithms for parallel processors given a fixed energy volume.

4 Conlusions

This article has surveyed algorithmic approaches to save energy. Another sur-
vey on algorithmic problems in power management was written by Irani and

Algorithms for Energy Saving 185

Pruhs [18]. The past months have witnessed considerable research activity and
it is conceivable that energy conservation from an algorithmic point of view
will continue to be an active area of investigation. Many open problems remain.
With respect to power-down mechanisms, for instance, it would be interesting
to design strategies that take into account the latency that arises when a sys-
tem is transitioned from a sleep state to the active state. As for speed scaling
techniques, we need a better understanding of strategies for multi-processor en-
vironments as multi-core architectures become more and more common not only
in servers but also in desktops and laptops.

References

1. http://www.microsoft.com/whdc/system/pnppwr/powermgmt/default.mspx
2. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.

ACM Transactions on Algorithms 3 (2007)
3. Albers, S., Müller, F., Schmelzer, S.: Speed scaling on parallel processors. In: Proc.

19th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 289–
298 (2007)

4. Augustine, J., Irani, S., Swamy, C.: Optimal power-down strategies. SIAM Journal
on Computing 37, 1499–1516 (2008)

5. Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. In:
Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 240–251. Springer, Heidelberg (2008)

6. Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for speed bounded
processors. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., In-
gólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp.
409–420. Springer, Heidelberg (2008)

7. Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function.
In: Proc. 20th ACM-SIAM Symposium on Discrete Algorithm, pp. 693–701 (2009)

8. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and tempera-
ture. Journal of the ACM 54 (2007)

9. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proc.
18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 805–813 (2007)

10. Baptiste, P., Chrobak, M., Dürr, C.: Polynomial time algorithms for minimum
energy scheduling. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 136–150. Springer, Heidelberg (2007)

11. Barroso, L.A.: The price of performance. ACM Queue 3 (2005)
12. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: Proc. 18th Annual

ACM Symposiun on Parallel Algorithms and Architectures, pp. 190–196 (2006)
13. Chan, H.-L., Chan, W.-T., Lam, T.-W., Lee, K.-L., Mak, K.-S., Wong, P.W.H.:

Energy efficient online deadline scheduling. In: Proc. 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 795–804 (2007)

14. Chan, H.-L., Edmonds, J., Lam, T.-W., Lee, L.-K., Marchetti-Spaccamela, A.,
Pruhs, K.: Nonclairvoyant speed scaling for flow and energy. In: Proc. 26th In-
ternational Symposium on Theoretical Aspects of Computer Science, pp. 255–264
(2009)

15. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadi-
moghaddam, M.: Scheduling to minimize gaps and power consumption. In: Proc.
19th Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 46–54
(2007)

186 S. Albers

16. Irani, S., Karlin, A.R.: Online computation. In: Hochbaum, D. (ed.) Approximation
Algorithms for NP-Hard Problems, pp. 521–564. PWS Publishing Company (1997)

17. Irani, S., Shukla, S.K., Gupta, R.K.: Online strategies for dynamic power manage-
ment in systems with multiple power-saving states. ACM Transaction in Embedded
Computing Systems 2, 325–346 (2003)

18. Irani, S., Pruhs, K.: Algorithmic problems in power management. SIGACT
News 36, 63–76 (2005)

19. Irani, S., Shukla, S.K., Gupta, R.: Algorithms for power savings. ACM Transactions
on Algorithms 3 (2007)

20. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive random-
ized algorithms for nonuniform problems. Algorithmica 11, 542–571 (1994)

21. Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Energy efficient deadline
scheduling in two processor systems. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS,
vol. 4835, pp. 476–487. Springer, Heidelberg (2007)

22. Lam, T.-W., Lee, L.-K., To, I.K.-K., Wong, P.W.H.: Competitive non-migratory
scheduling for flow time and energy. In: Proc. 20th Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 256–264 (2008)

23. Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Speed scaling functions for flow
time scheduling based on active job count. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 647–659. Springer, Heidelberg (2008)

24. Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks.
Journal on Combintorial Optimization 11, 305–319 (2006)

25. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for
variable voltage processors. Proc. National Academy of Sciences USA 103, 3983–
3987 (2006)

26. Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage
schedules. SIAM Journal on Computing 35, 658–671 (2005)

27. Pruhs, K., Uthaisombut, P., Woeginger, G.J.: Getting the best response for your
erg. ACM Transactions on Algorithms 4 (2008)

28. Pruhs, K., van Stee, R., Uthaisombut, P.: Speed scaling of tasks with precedence
constraints. Theory of Computing Systems 43, 67–80 (2008)

29. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communcations of the ACM 28, 202–208 (1985)

30. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy.
In: Proc. 36th IEEE Symposium on Foundations of Computer Science, pp. 374–382
(1995)

	Front matter
	Chapter 1
	Building Mathematics-Based Software Systems to Advance Science and Create Knowledge
	Introduction
	Mathematics-Based Software Systems
	Computational Geometry, Leda and CGAL
	Computational Logic and Nuprl
	Constructive Euclidean Geometry
	Logical Issues in Constructive Euclid-Like Geometry

	Chapter 2
	On Negations in Boolean Networks
	Introduction
	Monotone Boolean Networks
	From Monotone to Non-monotone Complexity

	Chapter 3
	The Lovász Local Lemma and Satisfiability
	Introduction
	Local Lemma in Terms of SAT – Proof and Algorithm
	Bounded Variable Degree
	Linear Formulas
	A Sudden Jump in Complexity
	Open Problems

	Chapter 4
	Kolmogorov-Complexity Based on Infinite Computations
	Introduction
	Basic Definitions
	The Universal Machine
	Infinite Sequences

	Kolmogorov - Complexity of Binary Sequences
	Definitions and Simple Consequences
	(ΔM,H)- Approximable Sequences
	Closure Properties of $Λ_{ΔM}$
	Random Sequences
	Other Classes of Random Sequences

	Concluding Remarks
	References

	Chapter 5
	Pervasive Theory of Memory
	Introduction
	Notation
	Architecture Aspects
	Sequential Memory
	Store Buffers
	Caches
	Memory Management Units
	Out of Order Execution
	Initializing an x64 Processor

	Programming Language
	Naive Parallel C Semantics
	Compilation
	Volatile Variables
	Synchronized Parallel C

	References

	Chapter 6
	Introducing Quasirandomness to Computer Science
	Introduction
	Quasirandomness and Quasi-Monte Carlo Integration
	Quasirandom Rumor Spreading
	Random Rumor Spreading
	The Quasirandom Model

	Analyzing Quasirandomness
	Experimental Results
	Conclusion and Open Problems

	Chapter 7
	Reflections on Optimal and Nearly Optimal Binary Search Trees
	Introduction
	Optimal Binary Search Trees
	Near Optimal Solutions and Analysis
	Trees with No Ordering on Keys
	Conclusion

	Chapter 8
	Some Results for Elementary Operations
	Introduction
	Dictionary Operations
	List Manipulation
	Priority Queues
	Temporal Precedence
	Finger Search
	Nearest Common Ancestors
	Negative Cycle
	Three-Sided Queries
	Rectangle Enclosure
	Dominance Searching
	Intersection Queries
	Hidden Line Elimination
	String Manipulation

	Chapter 9
	Maintaining Ideally Distributed Random Search Trees without Extra Space
	Introduction
	Random Search Trees
	Updating Random Search Trees
	Possible Improvements?
	A Riddle at the End

	Chapter 10
	A Pictorial Description of Cole's Parallel Merge Sort
	Introduction
	Preliminaries
	High-Level Description
	The Execution of a Stage
	Detailed Implementation
	Comparison with Cole's Description

	Chapter 11
	Self-matched Patterns, Golomb Rulers, and Sequence Reconstruction
	Introduction
	Sequence Reconstruction
	On the Relation between the Autocorrelation Function and the Probability of Reconstruction Failure
	Golomb Rulers
	Self-matched Patterns

	Concluding Remarks
	References

	Chapter 12
	Algorithms for Energy Saving
	Introduction
	Power-Down Mechanisms
	Dynamic Speed Scaling
	Conlusions

	Chapter 13
	Minimizing Average Flow-Time
	Introduction
	Previous Work
	An LP Formulation for Flow Time
	Rounding the LP Solution
	Rounding the LP Solution for Related Machines
	Rounding the LP Solution for Parallel Scheduling with Subset Constraints
	Minimizing Flow Time on Unrelated Machines
	Online Algorithm for Unrelated Machines with Speed Augmentation

	Chapter 14
	Integer Linear Programming in Computational Biology
	Introduction
	Sequence Analysis
	Multiple Sequence Alignment
	Sequence-Structure Alignments (RNA)

	Structural Bioinformatics
	Side-Chain Positioning
	Folding and Threading
	Hydrogen-Deuterium Exchange via Mass Spectrometry

	Probe Design for Microarray Experiments
	Computational Systems Biology
	Network-Based Disease Bioinformatics
	Comparative Network Analysis

	Vaccine Design
	Summary

	Chapter 15
	Via Detours to I/O-Efficient Shortest Paths
	Introduction
	State of the Art in 1997 and Main Problems
	First Attempts: Nice Results – Just Not for EM
	First Steps toward General EM Graph Traversal
	I/O-Efficient Breadth-First Search
	External-Memory Dynamic BFS
	Single Source Shortest-Paths
	All-Pairs Problems and Diameter Approximation
	Other Memory Hierarchies Models
	Conclusions

	Chapter 16
	The Computational Geometry of Comparing Shapes
	Introduction
	The Hausdorff Distance
	The Fréchet Distance
	Computing the Distance between Surfaces
	Hausdorff Distance
	Fréchet Distance

	Concluding Remarks

	Chapter 17
	Finding nearest larger neighbors: a case study in algorithm design and analysis
	What Is the ANLN Problem?
	The ANLN Problem for Linear Arrays
	NLN Problem in Higher Dimensions
	Extensions

	Chapter 18
	Multi-core Implementations of Geometric Algorithms
	Introduction
	Divide and Conquer
	Randomized Incremental Construction
	Experiments
	Conclusions

	Chapter 19
	The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension
	Introduction
	The Doubling Dimension of Metric Spaces
	The Weak Gap Property
	Proof of the Gap Theorem
	Final Remarks
	Open Problems
	Further Reading

	References

	Chapter 20
	On Map Labeling with Leaders
	Traditional Map Labeling
	Boundary Labeling - Models and Methods
	Extending the Standard Models
	Multi-stack Labeling
	Labeling Polygons with Leaders
	Boundary Labeling with Diagonal Leaders
	Many-to-One Labeling

	Discussion and Open Problems
	References

	Chapter 21
	The Crossing Number of Graphs: Theory and Computation
	Introduction
	Confusion on the Crossing Number
	The Rectilinear Crossing Number
	Applications of the Crossing Number
	Approximation
	Exact Computation
	Solved Open Problems

	Chapter 22
	Algorithm Engineering – An Attempt at a Definition
	Introduction
	A Brief ``History'' of Algorithm Engineering
	Models
	Design
	Analysis
	Implementation
	Experiments
	Algorithm Libraries
	Instances
	Applications
	Conclusions

	Chapter 23
	Of What Use Is Floating-Point Arithmetic in Computational Geometry?
	Introduction
	Ideally – Robust Floating-Point Algorithms
	Realistically – Speeding Up Exact Arithmetic
	Floating-Point Filtering
	Deriving Error Bounds for Floating-Point Computations
	Filtering of Geometric Predicates
	Structural Filtering

	Strangely – Not Computing What You Want, But at Least Exactly
	Controlled Perturbation

	What Else Is to Expect?

	Chapter 24
	Car or Public Transport—Two Worlds
	Introduction
	Models Again
	Road Networks
	Public Transportation Networks
	Multi-criteria Cost and Traffic Days
	Computing Costs Versus Computing Actual Paths

	Tricks of the Trade …and Why and When They Work
	Bidirectional Search
	Hierarchy
	Shortcuts / Contraction
	Goal Direction
	Distance Tables

	Conclusions

	Chapter 25
	Is the World Linear?
	Reminiscences
	Introduction
	A Linear World
	Exact Super-Resolution
	Conclusions

	Chapter 26
	 In Praise of Numerical Computation
	Introduction
	Return to the Continuum
	Abstract Computational Models
	Case Studies in Abstract Models
	The Exact Numerical Model
	Conclusion

	Chapter 27
	Much Ado about Zero
	Introduction
	Arithmetic Filters
	Zero Separation Bounds
	Some Background on Algebraic Numbers
	Known Constructive Zero Separation Bounds
	Adaptive Sign Computation with Expression Dags
	Some Ruminations and Observations

	Chapter 28
	Polynomial Precise Interval Analysis Revisited
	Introduction
	Notation and Basic Concepts
	Integer Equations without Minimum
	Extension with Positive and Negative Multiplications
	Integer Equations with Minimum
	Intervals
	Conclusion

	Back matter

